
Introduction to program synthesis

Tim Blazytko
〈tim.blazytko@rub.de〉

Ruhr-Universität Bochum

24th February 2017

Tim Blazytko (RUB) Program synthesis 24th February 2017 1 / 26



Today

What is program synthesis?

How does it work?

What is the state-of-the-art?

How can we use it for binary program analysis?

Note: This talk mainly summarises existing work.

Tim Blazytko (RUB) Program synthesis 24th February 2017 2 / 26



Program synthesis
Definition

synthesiserspecification program

Program synthesis
Automatic construction of programs that satisfy a given specificaton.

Tim Blazytko (RUB) Program synthesis 24th February 2017 3 / 26



Motivation
Expression simplification

Given the following two functions:

g(x , y , z) := (((x ⊕ y) + ((x ∧ y) · 2))∨ z) + (((x ⊕ y) + ((x ∧ y) · 2))∧ z)

h(x , y , z) := x + y + z

We can prove that

g(x , y , z) = h(x , y , z)

We want to learn the function h.

Tim Blazytko (RUB) Program synthesis 24th February 2017 4 / 26



Building blocks
We have to specify three categories

Program specificaton
How do we specify the intended program behaviour?

Synthesis language
In which language do we synthesise our program?

Synthesis method
How do we synthesise our program?

We will explore different combinations.

Tim Blazytko (RUB) Program synthesis 24th February 2017 5 / 26



Specifying program behaviour
Logical specificaton

φspec(~I,O) := O = g(x , y , z)

input vector ~I := (x , y , z)

ouput O := g(x , y , z)

conrete formula that specifies the input-output mapping

Tim Blazytko (RUB) Program synthesis 24th February 2017 6 / 26



Enumerative program synthesis
Algorithm

Enumerative program synthesis
1 perform an exhaustive search
2 sieve empirically/filter candidates
3 check for semantic equivalence to specification

Tim Blazytko (RUB) Program synthesis 24th February 2017 7 / 26



Enumerative program synthesis
Example

generate set of candidates with exhaustive search

filter set of candidates heuristically (not further specified)

x + x + x and x + y + z are (remaining) hypothesis candidates

check each candidate for semantic equivalence to the specificaton

x + y + z is (proven) semantically equivalent to specification

Tim Blazytko (RUB) Program synthesis 24th February 2017 8 / 26



Component-based program synthesis
Logical encoding

Logical specifications
program behaviour
set of library components
data-flow between components
encoding of a well-formed program

You don’t wanna see these encodings here.

Synthesis result
permutation of library components and input-output relations

Tim Blazytko (RUB) Program synthesis 24th February 2017 9 / 26



Component-based program synthesis
Example
We specify the components:

fa(i0, i1,O) := O = i0 + i1
fb(i0, i1,O) := O = i0 + i1

Synthesised program h(x , y , z)
Input: x , y , z
Output: O

1 O1 := fb(x , y)
2 O2 := fa(O1, z)
3 O := O2

O1 = x + y
O2 = (x + y) + z

Tim Blazytko (RUB) Program synthesis 24th February 2017 10 / 26



Oracle-guided program synthesis
Input/output samples as program specification

ORACLE(~I) := g(x , y , z)

access to I/O oracle

partial program specification based on I/O samples

finite set of samples: S = {(1, 1, 1)→ 3, (2, 4, 3)→ 9, . . . }

Tim Blazytko (RUB) Program synthesis 24th February 2017 11 / 26



Template-based program synthesis
Problem

∃f :
∧

~I,O∈S

f (~I) = O

Does there exist a function for which . . . ?

quantification over functions is second-order logic

SMT solvers operate on fragments of fist-order logic

⇒ function templates come to the rescue

Tim Blazytko (RUB) Program synthesis 24th February 2017 12 / 26



Template-based program synthesis
Function templates

We define function template T with free coefficients ~c = (c0, . . . , cn−1)

T (c0, c1, x , y , z) := (c0 == 0)?(x + y + c1) : (x + c1 + c1)

c1 ∈ {x , y , z}

ϕ := ∃~c :
∧

~I,O∈S

T (~c,~I) = O

Does there exist an assignment for which . . . ?

⇒ SMT(ϕ) returns c0 = 0 and c1 = z

Tim Blazytko (RUB) Program synthesis 24th February 2017 13 / 26



Counter-example guided program synthesis
Learning semantics incrementally

use logical specification as I/O oracle

use SMT solver to obtain distinguishing inputs

Algorithm
1 query I/O oracle with input vector
2 search a program candidate ϕ that satisfies I/O behaviour
3 check semantically equivalence to specification
4 if not equivalent

1 obtain distinguishing input and goto 1
5 return program candidate

Tim Blazytko (RUB) Program synthesis 24th February 2017 14 / 26



Counter-example guided program synthesis
Example

S := {(1, 1, 0)→ 2}

possible program candidate: h(x , y , z) := x + y

SMT(h(x , y , z) 6= g(x , y , z)) ∈ SAT

⇒ counterexample: (1, 2, 3)

query ORACLE(1, 2, 3) = 6

S := {(1, 1, 0)→ 2, (1, 2, 3)→ 6}

possible program candidate: h(x , y , z) := x + y + z

SMT(h(x , y , z) 6= g(x , y , z)) ∈ UNSAT

return h

Tim Blazytko (RUB) Program synthesis 24th February 2017 15 / 26



Stochastic program synthesis
A new era

stochastic optimisation problem

approximate global optima

⇒ intermediate results instead of SAT/UNSAT

synthesis is guided by a cost function towards global optima

one example: Monte Carlo Markov Chains (MCMC)

next talk introduces another approach in detail

Tim Blazytko (RUB) Program synthesis 24th February 2017 16 / 26



Stratified program synthesis
Learn more complex programs iteratively

Algorithm
1 synthesise expressions
2 add synthesised expressions to synthesis language
3 goto 1

Learn more complex expressions from previous results.

Tim Blazytko (RUB) Program synthesis 24th February 2017 17 / 26



Stratified synthesis
Example

the synthesis language’s components are +, a and b

we want to synthesise a + a + a + a + b + b

we synthesise a + b

we extend the synthesis language: +, a, b and a + b

we synthesise (a + b) + (a + b) + a + a

Tim Blazytko (RUB) Program synthesis 24th February 2017 18 / 26



Applications
Stochastic superoptimization (STOKE)

find an optimal code sequence for a sequence of instructions

replace assembly code by equivalent faster code

stochastic cost minimisation problem

cost function for transformation correctness and performance
improvements

MCMC for search space exploration

shorter and faster programs than gcc -O3

Tim Blazytko (RUB) Program synthesis 24th February 2017 19 / 26



Applications
Learning processor instructions from I/O samples

I/O samples of CPU instructions

template-based synthesis approach

6 synthesis templates for different ALU instructions

learned over 500 Intel x86 instructions in less than two hours

Automated generation of intermediate representations for program analysis

Tim Blazytko (RUB) Program synthesis 24th February 2017 20 / 26



Applications
Learning formal semantics for Intel x86

a manually written base set of formal semantics for 51 instructions

stratified synthesis with STOKE as synthesis core

learned formal semantics for 1, 795.42 instructions (61.5% of the
instructions in scope)

found errors in Intel documentation

Tim Blazytko (RUB) Program synthesis 24th February 2017 21 / 26



Applications
Metamorphic extraction

obfuscated metamorphic code engine

mixture of template-based and counter-example guided approach

I/O pairs from obfuscated metamorphic engine

template of metamorphic engine

SMT solver guessed assignment

terminate if synthesised and obfuscated engines are semantically
equivalent

Tim Blazytko (RUB) Program synthesis 24th February 2017 22 / 26



Applications
Shellcode generation

SMT-based approach

shellcode functionality

shellcode encoding restrictions

null bytes

all bytes must be odd

only prime bytes

Tim Blazytko (RUB) Program synthesis 24th February 2017 23 / 26



Applications
Deobfuscation

learning semantics of obfuscated codes

simplifying obfuscated code

see next talk for details

Tim Blazytko (RUB) Program synthesis 24th February 2017 24 / 26



Limitations

operate on semantic complexity

non-deterministic functions

point functions

confusion and diffusion (cryptography)

Tim Blazytko (RUB) Program synthesis 24th February 2017 25 / 26



Conclusion
specifying program behaviour
enumerative program synthesis
component-based program synthesis
oracle-guided program synthesis
template-based program synthesis
counter-example guided program synthesis
stochastic program synthesis
stratified program synthesis
superoptimisation
CPU emulator synthesis
shellcode generation
deobfuscation

Tim Blazytko (RUB) Program synthesis 24th February 2017 26 / 26



References

References I

Sorav Bansal and Alex Aiken. ‘Automatic Generation of Peephole
Superoptimizers’. In: ACM Sigplan Notices. 2006.
Patrice Godefroid and Ankur Taly. ‘Automated Synthesis of Symbolic
Instruction Encodings from I/O Samples’. In: ACM SIGPLAN Notices.
2012.
Sumit Gulwani. ‘Dimensions in Program Synthesis’. In: Proceedings
of the 12th international ACM SIGPLAN symposium on Principles and
practice of declarative programming. 2010.
Sumit Gulwani et al. ‘Synthesis of Loop-free Programs’. In: ACM
SIGPLAN Notices (2011).
Stefan Heule et al. ‘Stratified synthesis: Automatically Learning the
x86-64 Instruction Set’. In: ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI). 2016.

Tim Blazytko (RUB) Program synthesis 24th February 2017 27 / 26



References

References II

Susmit Jha et al. ‘Oracle-guided Component-based Program
Synthesis’. In: ACM/IEEE 32nd International Conference on Software
Engineering. 2010.
Rolf Rolles. Program Synthesis in Reverse Engineering. http:
//www.msreverseengineering.com/blog/2014/12/12/program-
synthesis-in-reverse-engineering. 2014.
Rolf Rolles. Synesthesia: A Modern Approach to Shellcode Generation.
http://www.msreverseengineering.com/blog/2016/11/8/

synesthesia-modern-shellcode-synthesis-ekoparty-2016-
talk. 2016.
Eric Schkufza, Rahul Sharma and Alex Aiken. ‘Stochastic
Superoptimization’. In: ACM SIGPLAN Notices (2013).

Tim Blazytko (RUB) Program synthesis 24th February 2017 28 / 26

http://www.msreverseengineering.com/blog/2014/12/12/program-synthesis-in-reverse-engineering
http://www.msreverseengineering.com/blog/2014/12/12/program-synthesis-in-reverse-engineering
http://www.msreverseengineering.com/blog/2014/12/12/program-synthesis-in-reverse-engineering
http://www.msreverseengineering.com/blog/2016/11/8/synesthesia-modern-shellcode-synthesis-ekoparty-2016-talk
http://www.msreverseengineering.com/blog/2016/11/8/synesthesia-modern-shellcode-synthesis-ekoparty-2016-talk
http://www.msreverseengineering.com/blog/2016/11/8/synesthesia-modern-shellcode-synthesis-ekoparty-2016-talk

	Appendix
	References


