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Today

What are SMT solvers?

How do they work?

What can we do with them?
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Motivation
Constraints

bool check(uint64_t key)
{

if (key < 7)
{

return (key * 3 > 15);
}

return 0;
}

1 key < 7

2 3 · key > 15

⇒ (key < 7) ∧ (key > 5)

⇒ key = 6
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Motivation
Complex constraints

bool check(uint64_t key)
{

return key * key * key * key * key * key * key == 0x90de757572b51cd3;
}

We may ask three questions:

Does a solution exist?

What is a solution?

How many solutions do exist?
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Motivation
Semantic equivalence

f (x , y) := (x ⊕ y) + 2 · (x ∧ y)

We observe

f (1, 1) = 2

f (2, 3) = 5

f (10, 20) = 30

We ask ourselves if

x + y ?= (x ⊕ y) + 2 · (x ∧ y)
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Satisfiability modulo theories (SMT)
What are SMT solvers?

SAT
Is (a ∨ ¬c) ∧ (a ∨ b ∨ c) ∧ (a ∨ ¬b) satisfiable?

SMT
SAT + modulo theories
in the best case: NP-complete
in the worst case: undecidable

Modulo theories
theory of bit vectors
theory of arrays

⇒ efficient solvers through conflict-driven clause learning
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Conflict-driven clause learning (CDCL)
Algorithm (simplified)

Conflict-driven clause learning
1 choose random assignment
2 unit propagation
3 conflict analysis
4 backtracking

We skip implication graphs and backtracking.
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Conflict-driven clause learning (CDCL)
Choose random assignment

g := (a ∨ ¬c) ∧ (a ∨ b ∨ c) ∧ (a ∨ ¬b)

randomly choose a = 0

⇒ (0 ∨ ¬c) ∧ (0 ∨ b ∨ c) ∧ (0 ∨ ¬b)
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Conflict-driven clause learning (CDCL)
Unit propagation

(0 ∨ ¬c) ∧ (0 ∨ b ∨ c) ∧ (0 ∨ ¬b)

c = 0

b = 1

b = 0 �

⇒ a ∨ ¬b cannot be satisfied

⇒ g cannot be satisfied
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Conflict-driven clause learning (CDCL)
Conflict analysis

(a = 0, b = 1)⇒ conflict

X ⇒ Y ⇔ ¬Y ⇒ ¬X (contraposition)

⇒ ¬conflict⇒ (a = 1, b = 0)

⇒ ¬(a ∧ ¬b)⇔ ¬a ∨ b

⇒ cl := ¬a ∨ b (conflict clause)
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Conflict-driven clause learning (CDCL)
Next iteration (after backtracking)

g ′ := g ∧ cl = (a ∨ ¬c) ∧ (a ∨ b ∨ c) ∧ (a ∨ ¬b) ∧ (¬a ∨ b)

randomly choose a = 1

. . .

randomly choose b = 1

. . .

randomly choose c = 0

. . .

SAT
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SAT + theory solver
Interaction

g := t1 ∧ t2 ∧ (t3 ∨ t4)
t1 : a < b
t2 : a + b == 100
t3 : b > 50
t4 : a == 99

SAT solver randomly sets t4 = 1

queries theory solver with (t1, t2, t4)
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SAT + theory solver
Theory solver

t4 : a = 99

t2 : a + b = 100⇔ b = 1

t1 : (a < b)⇔ 99 < 1 �

UNSAT

cl := t1 ∨ t2 ∨ t4 (conflict clause)
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SAT + theory
Final moves

g ′ := g ∧ cl = t1 ∧ t2 ∧ (t3 ∨ t4) ∧ (t1 ∨ t2 ∨ t4)

SAT solver: t1 = 1, t2 = 1, t3 = 1, t4 = 0

theory solver

t1 : a < b

t2 : a + b == 100

t3 : b > 50

⇒ SAT for a = 1, b = 99

⇒ SAT
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Satisfiability modulo theories (SMT)
What are SMT solvers?

SAT
Is (a ∨ ¬c) ∧ (a ∨ b ∨ c) ∧ (a ∨ ¬b) satisfiable?

SMT
SAT + modulo theories
in the best case: NP-complete
in the worst case: undecidable

Modulo theories
theory of bit vectors
theory of arrays

Slide is duplicated from before
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Satisfiability modulo theories (SMT)
Theory of bit vectors

Bit vector
A bit vector b is a vector of bits with a given length l :

b : {0, . . . , l − 1} → {0, 1}.

b mod 2l , b ∈ BV

arithmetic operations (+,−, ∗, /, . . . )

bitwise operations (∧,∨,⊕,�, . . . )

eax = (eax + ebx)� 1
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Satisfiability modulo theories (SMT)
Theory of arrays

Operations
read: ARRAY× INDEX→ ELEMENT
write: ARRAY× INDEX×ELEMENT→ ARRAY

mov eax, [ebp]

eax = read(M, ebp)

mov [ebp], eax

M ′ = write(M, ebp, eax)
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Applications
Complex constraints

bool check(uint64_t key)
{

return key * key * key * key * key * key * key == 0x90de757572b51cd3;
}

Does a solution exist? yes

What is a solution? 0xe80e9aac619831fb

How many solutions do exist? 1
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Complex constraints

DEMO
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Model counting
How many solutions do exist?

Naive approach
1 counter := 0
2 WHILE SMT(ϕ) ∈ SAT:

1 generate conjunction c from model assignment
2 ϕ := ϕ ∧ ¬c
3 counter := counter + 1

(k ·k ·k ·k ·k ·k ·k == 0x90de757572b51cd3)∧(k 6= 0xe80e9aac619831fb)

might not terminate
does not work for every theory
independent research branch
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Applications
Semantic equivalence

f (x , y) := (x ⊕ y) + 2 · (x ∧ y)

We observe

f (1, 1) = 2

f (2, 3) = 5

f (10, 20) = 30

We ask ourselves if

x + y ?= (x ⊕ y) + 2 · (x ∧ y)
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Semantic equivalence

ϕ
?= ψ

SMT(ϕ == ψ) ∈ SAT

⇒ single instance that satisfies the constraints

not what we are looking for

SMT(ϕ 6= ψ) ∈ UNSAT

⇒ no instance that satisfies the constraints

⇒ we proved that ϕ and ψ are semantically equivalent
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Semantic equivalence

DEMO
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Applications
Symbolic execution

add eax, eax ⇒ eax := eax + eax

perform symbolic computations on basic blocks

⇒ automated derivation of constraints

query SMT solver to prove characteristics of constraints
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Symbolic execution

DEMO

Tim Blazytko (RUB) SMT for reverse engineers 23rd February 2017 25 / 35



Advanced applications
Graph search

a

b c

d

t1 := b ⇒ d

t2 := c ⇒ d

t3 := a⇒ (b ∧ ¬c) ∨ (¬b ∧ c)

ϕ := t1 ∧ t2 ∧ t3
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Advanced applications
Exploit generation

int vuln(char input[])
{

char output[15];
int pass = 0;

strcpy(output, input);

if (pass)
return 1;

return 0;
}

stack variable pass is set to 0

vuln returns 1 if pass 6= 0

buffer overflow at strcpy overwrites pass

Tim Blazytko (RUB) SMT for reverse engineers 23rd February 2017 27 / 35



Bounded model checking
Overview

ϕ := preconditions ∧ prog ∧ ¬postconditions

preconditions: initial program state

prog : k times unwound control-flow graph

postconditions: memory layout for exploitation

SMT(ϕ) ∈ UNSAT : no bug in the bounded program execution

SMT(ϕ) ∈ SAT : bug in the bounded program execution
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Bounded model checking
Workflow

1 create memory dump

2 translate assembly code into intermediate representation

3 inline functions

4 unroll loops

5 apply static single assignment (SSA)

6 apply preconditions and postconditions

7 generate SMT formula
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Bounded model checking

DEMO
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Advanced applications
Breaking weak cryptography

Petya ransomware

modified salsa20 cipher

10 instead of 20 rounds

operates on 16-bit instead of 32-bit words

broken by genetic algorithm in 10 to 30 seconds

SMT solver break it in less than 1 second
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Further applications

deobfuscation

ROP gadget chaining (compiler)

shellcode construction

program synthesis

. . .
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General notes

SMT solvers are very efficient for real-world problems

different SMT solvers for different use cases

boolector for arrays and bit vectors

z3 has a powerful API and supports many theories

generic SMT interface defined by SMT-LIB standard
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Limitations

buggy in some edge cases

⇒ try out different SMT solvers

in general, problems are at least NP-complete

confusion and diffusion

⇒ they cannot break strong cryptography
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Conclusion
SAT solvers

conflict-driven clause learning

SAT + theory interaction

theory of bit vectors and arrays

solving complex constraints

model counting

proving semantic equivalence

symbolic execution

graph search

bounded model checking

breaking weak cryptography
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