
Constraint solving for reverse engineers

Tim Blazytko
〈tim.blazytko@rub.de〉

Ruhr-Universität Bochum

23rd February 2017

Tim Blazytko (RUB) SMT for reverse engineers 23rd February 2017 1 / 35



Today

What are SMT solvers?

How do they work?

What can we do with them?

Tim Blazytko (RUB) SMT for reverse engineers 23rd February 2017 2 / 35



Motivation
Constraints

bool check(uint64_t key)
{

if (key < 7)
{

return (key * 3 > 15);
}

return 0;
}

1 key < 7

2 3 · key > 15

⇒ (key < 7) ∧ (key > 5)

⇒ key = 6

Tim Blazytko (RUB) SMT for reverse engineers 23rd February 2017 3 / 35



Motivation
Complex constraints

bool check(uint64_t key)
{

return key * key * key * key * key * key * key == 0x90de757572b51cd3;
}

We may ask three questions:

Does a solution exist?

What is a solution?

How many solutions do exist?

Tim Blazytko (RUB) SMT for reverse engineers 23rd February 2017 4 / 35



Motivation
Semantic equivalence

f (x , y) := (x ⊕ y) + 2 · (x ∧ y)

We observe

f (1, 1) = 2

f (2, 3) = 5

f (10, 20) = 30

We ask ourselves if

x + y ?= (x ⊕ y) + 2 · (x ∧ y)

Tim Blazytko (RUB) SMT for reverse engineers 23rd February 2017 5 / 35



Satisfiability modulo theories (SMT)
What are SMT solvers?

SAT
Is (a ∨ ¬c) ∧ (a ∨ b ∨ c) ∧ (a ∨ ¬b) satisfiable?

SMT
SAT + modulo theories
in the best case: NP-complete
in the worst case: undecidable

Modulo theories
theory of bit vectors
theory of arrays

⇒ efficient solvers through conflict-driven clause learning
Tim Blazytko (RUB) SMT for reverse engineers 23rd February 2017 6 / 35



Conflict-driven clause learning (CDCL)
Algorithm (simplified)

Conflict-driven clause learning
1 choose random assignment
2 unit propagation
3 conflict analysis
4 backtracking

We skip implication graphs and backtracking.

Tim Blazytko (RUB) SMT for reverse engineers 23rd February 2017 7 / 35



Conflict-driven clause learning (CDCL)
Choose random assignment

g := (a ∨ ¬c) ∧ (a ∨ b ∨ c) ∧ (a ∨ ¬b)

randomly choose a = 0

⇒ (0 ∨ ¬c) ∧ (0 ∨ b ∨ c) ∧ (0 ∨ ¬b)

Tim Blazytko (RUB) SMT for reverse engineers 23rd February 2017 8 / 35



Conflict-driven clause learning (CDCL)
Unit propagation

(0 ∨ ¬c) ∧ (0 ∨ b ∨ c) ∧ (0 ∨ ¬b)

c = 0

b = 1

b = 0 �

⇒ a ∨ ¬b cannot be satisfied

⇒ g cannot be satisfied

Tim Blazytko (RUB) SMT for reverse engineers 23rd February 2017 9 / 35



Conflict-driven clause learning (CDCL)
Conflict analysis

(a = 0, b = 1)⇒ conflict

X ⇒ Y ⇔ ¬Y ⇒ ¬X (contraposition)

⇒ ¬conflict⇒ (a = 1, b = 0)

⇒ ¬(a ∧ ¬b)⇔ ¬a ∨ b

⇒ cl := ¬a ∨ b (conflict clause)

Tim Blazytko (RUB) SMT for reverse engineers 23rd February 2017 10 / 35



Conflict-driven clause learning (CDCL)
Next iteration (after backtracking)

g ′ := g ∧ cl = (a ∨ ¬c) ∧ (a ∨ b ∨ c) ∧ (a ∨ ¬b) ∧ (¬a ∨ b)

randomly choose a = 1

. . .

randomly choose b = 1

. . .

randomly choose c = 0

. . .

SAT

Tim Blazytko (RUB) SMT for reverse engineers 23rd February 2017 11 / 35



SAT + theory solver
Interaction

g := t1 ∧ t2 ∧ (t3 ∨ t4)
t1 : a < b
t2 : a + b == 100
t3 : b > 50
t4 : a == 99

SAT solver randomly sets t4 = 1

queries theory solver with (t1, t2, t4)

Tim Blazytko (RUB) SMT for reverse engineers 23rd February 2017 12 / 35



SAT + theory solver
Theory solver

t4 : a = 99

t2 : a + b = 100⇔ b = 1

t1 : (a < b)⇔ 99 < 1 �

UNSAT

cl := t1 ∨ t2 ∨ t4 (conflict clause)

Tim Blazytko (RUB) SMT for reverse engineers 23rd February 2017 13 / 35



SAT + theory
Final moves

g ′ := g ∧ cl = t1 ∧ t2 ∧ (t3 ∨ t4) ∧ (t1 ∨ t2 ∨ t4)

SAT solver: t1 = 1, t2 = 1, t3 = 1, t4 = 0

theory solver

t1 : a < b

t2 : a + b == 100

t3 : b > 50

⇒ SAT for a = 1, b = 99

⇒ SAT

Tim Blazytko (RUB) SMT for reverse engineers 23rd February 2017 14 / 35



Satisfiability modulo theories (SMT)
What are SMT solvers?

SAT
Is (a ∨ ¬c) ∧ (a ∨ b ∨ c) ∧ (a ∨ ¬b) satisfiable?

SMT
SAT + modulo theories
in the best case: NP-complete
in the worst case: undecidable

Modulo theories
theory of bit vectors
theory of arrays

Slide is duplicated from before
Tim Blazytko (RUB) SMT for reverse engineers 23rd February 2017 15 / 35



Satisfiability modulo theories (SMT)
Theory of bit vectors

Bit vector
A bit vector b is a vector of bits with a given length l :

b : {0, . . . , l − 1} → {0, 1}.

b mod 2l , b ∈ BV

arithmetic operations (+,−, ∗, /, . . . )

bitwise operations (∧,∨,⊕,�, . . . )

eax = (eax + ebx)� 1

Tim Blazytko (RUB) SMT for reverse engineers 23rd February 2017 16 / 35



Satisfiability modulo theories (SMT)
Theory of arrays

Operations
read: ARRAY× INDEX→ ELEMENT
write: ARRAY× INDEX×ELEMENT→ ARRAY

mov eax, [ebp]

eax = read(M, ebp)

mov [ebp], eax

M ′ = write(M, ebp, eax)

Tim Blazytko (RUB) SMT for reverse engineers 23rd February 2017 17 / 35



Applications
Complex constraints

bool check(uint64_t key)
{

return key * key * key * key * key * key * key == 0x90de757572b51cd3;
}

Does a solution exist? yes

What is a solution? 0xe80e9aac619831fb

How many solutions do exist? 1

Tim Blazytko (RUB) SMT for reverse engineers 23rd February 2017 18 / 35



Complex constraints

DEMO

Tim Blazytko (RUB) SMT for reverse engineers 23rd February 2017 19 / 35



Model counting
How many solutions do exist?

Naive approach
1 counter := 0
2 WHILE SMT(ϕ) ∈ SAT:

1 generate conjunction c from model assignment
2 ϕ := ϕ ∧ ¬c
3 counter := counter + 1

(k ·k ·k ·k ·k ·k ·k == 0x90de757572b51cd3)∧(k 6= 0xe80e9aac619831fb)

might not terminate
does not work for every theory
independent research branch

Tim Blazytko (RUB) SMT for reverse engineers 23rd February 2017 20 / 35



Applications
Semantic equivalence

f (x , y) := (x ⊕ y) + 2 · (x ∧ y)

We observe

f (1, 1) = 2

f (2, 3) = 5

f (10, 20) = 30

We ask ourselves if

x + y ?= (x ⊕ y) + 2 · (x ∧ y)

Tim Blazytko (RUB) SMT for reverse engineers 23rd February 2017 21 / 35



Semantic equivalence

ϕ
?= ψ

SMT(ϕ == ψ) ∈ SAT

⇒ single instance that satisfies the constraints

not what we are looking for

SMT(ϕ 6= ψ) ∈ UNSAT

⇒ no instance that satisfies the constraints

⇒ we proved that ϕ and ψ are semantically equivalent

Tim Blazytko (RUB) SMT for reverse engineers 23rd February 2017 22 / 35



Semantic equivalence

DEMO

Tim Blazytko (RUB) SMT for reverse engineers 23rd February 2017 23 / 35



Applications
Symbolic execution

add eax, eax ⇒ eax := eax + eax

perform symbolic computations on basic blocks

⇒ automated derivation of constraints

query SMT solver to prove characteristics of constraints

Tim Blazytko (RUB) SMT for reverse engineers 23rd February 2017 24 / 35



Symbolic execution

DEMO

Tim Blazytko (RUB) SMT for reverse engineers 23rd February 2017 25 / 35



Advanced applications
Graph search

a

b c

d

t1 := b ⇒ d

t2 := c ⇒ d

t3 := a⇒ (b ∧ ¬c) ∨ (¬b ∧ c)

ϕ := t1 ∧ t2 ∧ t3

Tim Blazytko (RUB) SMT for reverse engineers 23rd February 2017 26 / 35



Advanced applications
Exploit generation

int vuln(char input[])
{

char output[15];
int pass = 0;

strcpy(output, input);

if (pass)
return 1;

return 0;
}

stack variable pass is set to 0

vuln returns 1 if pass 6= 0

buffer overflow at strcpy overwrites pass

Tim Blazytko (RUB) SMT for reverse engineers 23rd February 2017 27 / 35



Bounded model checking
Overview

ϕ := preconditions ∧ prog ∧ ¬postconditions

preconditions: initial program state

prog : k times unwound control-flow graph

postconditions: memory layout for exploitation

SMT(ϕ) ∈ UNSAT : no bug in the bounded program execution

SMT(ϕ) ∈ SAT : bug in the bounded program execution

Tim Blazytko (RUB) SMT for reverse engineers 23rd February 2017 28 / 35



Bounded model checking
Workflow

1 create memory dump

2 translate assembly code into intermediate representation

3 inline functions

4 unroll loops

5 apply static single assignment (SSA)

6 apply preconditions and postconditions

7 generate SMT formula

Tim Blazytko (RUB) SMT for reverse engineers 23rd February 2017 29 / 35



Bounded model checking

DEMO

Tim Blazytko (RUB) SMT for reverse engineers 23rd February 2017 30 / 35



Advanced applications
Breaking weak cryptography

Petya ransomware

modified salsa20 cipher

10 instead of 20 rounds

operates on 16-bit instead of 32-bit words

broken by genetic algorithm in 10 to 30 seconds

SMT solver break it in less than 1 second

Tim Blazytko (RUB) SMT for reverse engineers 23rd February 2017 31 / 35



Further applications

deobfuscation

ROP gadget chaining (compiler)

shellcode construction

program synthesis

. . .

Tim Blazytko (RUB) SMT for reverse engineers 23rd February 2017 32 / 35



General notes

SMT solvers are very efficient for real-world problems

different SMT solvers for different use cases

boolector for arrays and bit vectors

z3 has a powerful API and supports many theories

generic SMT interface defined by SMT-LIB standard

Tim Blazytko (RUB) SMT for reverse engineers 23rd February 2017 33 / 35



Limitations

buggy in some edge cases

⇒ try out different SMT solvers

in general, problems are at least NP-complete

confusion and diffusion

⇒ they cannot break strong cryptography

Tim Blazytko (RUB) SMT for reverse engineers 23rd February 2017 34 / 35



Conclusion
SAT solvers

conflict-driven clause learning

SAT + theory interaction

theory of bit vectors and arrays

solving complex constraints

model counting

proving semantic equivalence

symbolic execution

graph search

bounded model checking

breaking weak cryptography

Tim Blazytko (RUB) SMT for reverse engineers 23rd February 2017 35 / 35



References

References I

Research Group Verification meets Algorithm Engineering. LLBMC –
The Low-Level Bounded Model Checker. url: http://llbmc.org.
Clark Barrett, Pascal Fontaine and Cesare Tinelli. The SMT-LIB
Standard: Version 2.5. Tech. rep. Department of Computer Science,
The University of Iowa, 2015. url: http://smtlib.cs.uiowa.edu.
Tim Blazytko. Static data flow analysis and constraint solving to craft
inputs for binary programs. 2015. url: https:
//archive.org/details/static_data_flow_analysis_and_
constraint_solving_to_craft_inputs_for_binary_programs.
A.R. Bradley and Z. Manna. The Calculus of Computation: Decision
Procedures with Applications to Verification. Springer Berlin
Heidelberg, 2007. isbn: 9783540741138.

Tim Blazytko (RUB) SMT for reverse engineers 23rd February 2017 36 / 35

http://llbmc.org
http://smtlib.cs.uiowa.edu
https://archive.org/details/static_data_flow_analysis_and_constraint_solving_to_craft_inputs_for_binary_programs
https://archive.org/details/static_data_flow_analysis_and_constraint_solving_to_craft_inputs_for_binary_programs
https://archive.org/details/static_data_flow_analysis_and_constraint_solving_to_craft_inputs_for_binary_programs


References

References II

D. Kroening, R.E. Bryant and O. Strichman. Decision Procedures: An
Algorithmic Point of View. Texts in Theoretical Computer Science.
An EATCS Series. Springer Berlin Heidelberg, 2008. isbn:
9783540741046.
Aina Niemetz, Mathias Preiner and Armin Biere. Boolector. url:
http://fmv.jku.at/boolector/.
Microsoft Research. The Z3 Theorem Prover. url:
https://github.com/Z3Prover/z3.
Rolf Rolles. The Case for Semantics-Based Methods in Reverse
Engineering. 2012. url: http:
//www.msreverseengineering.com/blog/2014/6/23/recon-
2012-keynote-the-case-for-semantics-based-methods-in-
reverse-engineering.

Tim Blazytko (RUB) SMT for reverse engineers 23rd February 2017 37 / 35

http://fmv.jku.at/boolector/
https://github.com/Z3Prover/z3
http://www.msreverseengineering.com/blog/2014/6/23/recon-2012-keynote-the-case-for-semantics-based-methods-in-reverse-engineering
http://www.msreverseengineering.com/blog/2014/6/23/recon-2012-keynote-the-case-for-semantics-based-methods-in-reverse-engineering
http://www.msreverseengineering.com/blog/2014/6/23/recon-2012-keynote-the-case-for-semantics-based-methods-in-reverse-engineering
http://www.msreverseengineering.com/blog/2014/6/23/recon-2012-keynote-the-case-for-semantics-based-methods-in-reverse-engineering


References

References III

Edward J Schwartz, Thanassis Avgerinos and David Brumley. ‘All you
ever wanted to know about dynamic taint analysis and forward
symbolic execution (but might have been afraid to ask)’. In: IEEE
Symposium on Security and Privacy 2010. IEEE. 2010, pp. 317–331.
CEA IT Security. Miasm2. url:
https://github.com/cea-sec/miasm.
leo stone. hack-petya. url:
https://github.com/leo-stone/hack-petya.
Julien Vanegue, Sean Heelan and Rolf Rolles. ‘SMT Solvers in
Software Security.’ In: WOOT. 2012, pp. 85–96.

Tim Blazytko (RUB) SMT for reverse engineers 23rd February 2017 38 / 35

https://github.com/cea-sec/miasm
https://github.com/leo-stone/hack-petya

	Appendix
	References


