
Control Flow Analysis

Tim Blazytko
@mr_phrazer
tim@blazytko.to
https://synthesis.to

https://synthesis.to

Why?

Motivation

• high-level structure of a function

• detect branches and loops

• pattern matching to spot interesting code parts

• foundation for automated program analysis

2

Basic Block

Basic Block

• sequence of ordered instructions

• single entry: only first instruction can be target of a branch

• single exit: only last instruction can branch to other basic blocks

4

Basic Block

• sequence of ordered instructions

• single entry: only first instruction can be target of a branch

• single exit: only last instruction can branch to other basic blocks

4

Basic Block

• sequence of ordered instructions

• single entry: only first instruction can be target of a branch

• single exit: only last instruction can branch to other basic blocks

4

Basic Block Identification

Rules: Leader Instruction Identification

1. first instruction is a leader

2. target of a control flow transfer is a leader

3. instruction that immediately follows a control flow transfer is a leader

6

Split on calls?

• strict basic block definition: yes

• calls interrupt the control flow

• many tools handle it differently due to readability reasons

• most calls return to the next instruction

Know how your tool handles it.

7

Split on calls?

• strict basic block definition: yes

• calls interrupt the control flow

• many tools handle it differently due to readability reasons

• most calls return to the next instruction

Know how your tool handles it.

7

Split on calls?

• strict basic block definition: yes

• calls interrupt the control flow

• many tools handle it differently due to readability reasons

• most calls return to the next instruction

Know how your tool handles it.

7

Basic Blocks

; leader: first instruction
0x170A0: cmp edi, 26h
0x170A3: jz short 0x170C0

; leader: follows a control flow transfer
0x170A5: jg short 0x170B8

; leader: follows a control flow transfer
0x170A7: xor eax, eax
0x170A9: cmp edi, 10h
0x170AC: jz short 0x170C2

; leader: follows a control flow transfer
0x170AE: cmp edi, 16h
0x170B1: setnz al
0x170B4: retn

; leader: target of control flow transfer
0x170B8: cmp edi, 5Fh
0x170BB: setnz al
0x170BE: retn

; leader: target of control flow transfer
0x170C0: xor eax, eax

; leader: target of control flow transfer
0x170C2: retn

8

Control Flow Graph

loc_170b8

CMP EDI, 0x5F

SETNZ AL

RET

loc_170a7

XOR EAX, EAX

CMP EDI, 0x10

JZ loc_170c2

loc_170c2

RET

loc_170ae

CMP EDI, 0x16

SETNZ AL

RET

loc_170a0

CMP EDI, 0x26

JZ loc_170c0

loc_170c0

XOR EAX, EAX

loc_170a5

JG loc_170b8

9

Control Flow Graph

Control Flow Graph

• directed multigraph

• nodes are basic blocks

• edges represent control flow between basic blocks

• represents all program paths that might be traversed

11

Control Flow Graph

Entry
A node that has no incoming edges.

Exit
A node that has no outgoing edges.

Path
A chain of transition between nodes.

12

Control Flow Graph

Entry
A node that has no incoming edges.

Exit
A node that has no outgoing edges.

Path
A chain of transition between nodes.

12

Control Flow Graph

Entry
A node that has no incoming edges.

Exit
A node that has no outgoing edges.

Path
A chain of transition between nodes.

12

Control Flow Graph

a

b c

d e

f g

• a is a entry node
• f and g are exists
• a→ c→ d→ f is a path between a and f

13

Control Flow Graph

a

b c

d e

f g

• a is a entry node
• f and g are exists
• a→ c→ d→ f is a path between a and f

13

Dominance Relations

Motivation

• graph-theoretic concept

• analyze relations between basic blocks

• provide guarantees that a basic block x is always executed before y

• loop detection and analysis

• foundation for many compiler optimizations and other analysis techniques

15

Motivation

• graph-theoretic concept

• analyze relations between basic blocks

• provide guarantees that a basic block x is always executed before y

• loop detection and analysis

• foundation for many compiler optimizations and other analysis techniques

15

Motivation

• graph-theoretic concept

• analyze relations between basic blocks

• provide guarantees that a basic block x is always executed before y

• loop detection and analysis

• foundation for many compiler optimizations and other analysis techniques

15

Motivation

• graph-theoretic concept

• analyze relations between basic blocks

• provide guarantees that a basic block x is always executed before y

• loop detection and analysis

• foundation for many compiler optimizations and other analysis techniques

15

Motivation

• graph-theoretic concept

• analyze relations between basic blocks

• provide guarantees that a basic block x is always executed before y

• loop detection and analysis

• foundation for many compiler optimizations and other analysis techniques

15

Dominator

Dominator

• a node x dominates a node y if every path from the entry node to y goes through x

• x is a dominator of y: (x ≤ y)

• y is dominated by x: (y ≥ x)

• dom(y) is the set of all dominators of y (dominator set)

• each node dominates itself: y ∈ dom(y)

• entry node dominates all nodes in the graph

17

Dominator

• a node x dominates a node y if every path from the entry node to y goes through x

• x is a dominator of y: (x ≤ y)

• y is dominated by x: (y ≥ x)

• dom(y) is the set of all dominators of y (dominator set)

• each node dominates itself: y ∈ dom(y)

• entry node dominates all nodes in the graph

17

Dominator

• a node x dominates a node y if every path from the entry node to y goes through x

• x is a dominator of y: (x ≤ y)

• y is dominated by x: (y ≥ x)

• dom(y) is the set of all dominators of y (dominator set)

• each node dominates itself: y ∈ dom(y)

• entry node dominates all nodes in the graph

17

Dominator

• a node x dominates a node y if every path from the entry node to y goes through x

• x is a dominator of y: (x ≤ y)

• y is dominated by x: (y ≥ x)

• dom(y) is the set of all dominators of y (dominator set)

• each node dominates itself: y ∈ dom(y)

• entry node dominates all nodes in the graph

17

Dominator

• a node x dominates a node y if every path from the entry node to y goes through x

• x is a dominator of y: (x ≤ y)

• y is dominated by x: (y ≥ x)

• dom(y) is the set of all dominators of y (dominator set)

• each node dominates itself: y ∈ dom(y)

• entry node dominates all nodes in the graph

17

Dominator

• a node x dominates a node y if every path from the entry node to y goes through x

• x is a dominator of y: (x ≤ y)

• y is dominated by x: (y ≥ x)

• dom(y) is the set of all dominators of y (dominator set)

• each node dominates itself: y ∈ dom(y)

• entry node dominates all nodes in the graph

17

Dominator Sets

a

b c

d e

f g

• dom(a) = {a}
• dom(b) = {a,b}
• dom(c) = {a, c}
• dom(d) = {a,d}
• dom(e) = {a, c, e}
• dom(f) = {a, f}
• dom(g) = {a, c, e,g}

18

Dominator Sets

a

b c

d e

f g

• dom(a) = {a}

• dom(b) = {a,b}
• dom(c) = {a, c}
• dom(d) = {a,d}
• dom(e) = {a, c, e}
• dom(f) = {a, f}
• dom(g) = {a, c, e,g}

18

Dominator Sets

a

b c

d e

f g

• dom(a) = {a}
• dom(b) = {a,b}

• dom(c) = {a, c}
• dom(d) = {a,d}
• dom(e) = {a, c, e}
• dom(f) = {a, f}
• dom(g) = {a, c, e,g}

18

Dominator Sets

a

b c

d e

f g

• dom(a) = {a}
• dom(b) = {a,b}
• dom(c) = {a, c}

• dom(d) = {a,d}
• dom(e) = {a, c, e}
• dom(f) = {a, f}
• dom(g) = {a, c, e,g}

18

Dominator Sets

a

b c

d e

f g

• dom(a) = {a}
• dom(b) = {a,b}
• dom(c) = {a, c}
• dom(d) = {a,d}

• dom(e) = {a, c, e}
• dom(f) = {a, f}
• dom(g) = {a, c, e,g}

18

Dominator Sets

a

b c

d e

f g

• dom(a) = {a}
• dom(b) = {a,b}
• dom(c) = {a, c}
• dom(d) = {a,d}
• dom(e) = {a, c, e}

• dom(f) = {a, f}
• dom(g) = {a, c, e,g}

18

Dominator Sets

a

b c

d e

f g

• dom(a) = {a}
• dom(b) = {a,b}
• dom(c) = {a, c}
• dom(d) = {a,d}
• dom(e) = {a, c, e}
• dom(f) = {a, f}

• dom(g) = {a, c, e,g}

18

Dominator Sets

a

b c

d e

f g

• dom(a) = {a}
• dom(b) = {a,b}
• dom(c) = {a, c}
• dom(d) = {a,d}
• dom(e) = {a, c, e}
• dom(f) = {a, f}
• dom(g) = {a, c, e,g}

18

Immediate Dominator

Immediate Dominator

• a node x strictly dominates a node y if x ≤ y and x ̸= y: x < y

• x is an immediate dominator of y if

1. x < y

2. ∄c : x < c < y

• x is the closest dominator to y with x ̸= y

• every node (except entry) has an immediate dominator

20

Immediate Dominator

• a node x strictly dominates a node y if x ≤ y and x ̸= y: x < y

• x is an immediate dominator of y if

1. x < y

2. ∄c : x < c < y

• x is the closest dominator to y with x ̸= y

• every node (except entry) has an immediate dominator

20

Immediate Dominator

• a node x strictly dominates a node y if x ≤ y and x ̸= y: x < y

• x is an immediate dominator of y if

1. x < y

2. ∄c : x < c < y

• x is the closest dominator to y with x ̸= y

• every node (except entry) has an immediate dominator

20

Immediate Dominator

• a node x strictly dominates a node y if x ≤ y and x ̸= y: x < y

• x is an immediate dominator of y if

1. x < y

2. ∄c : x < c < y

• x is the closest dominator to y with x ̸= y

• every node (except entry) has an immediate dominator

20

Immediate Dominator

• a node x strictly dominates a node y if x ≤ y and x ̸= y: x < y

• x is an immediate dominator of y if

1. x < y

2. ∄c : x < c < y

• x is the closest dominator to y with x ̸= y

• every node (except entry) has an immediate dominator

20

Immediate Dominator

• a node x strictly dominates a node y if x ≤ y and x ̸= y: x < y

• x is an immediate dominator of y if

1. x < y

2. ∄c : x < c < y

• x is the closest dominator to y with x ̸= y

• every node (except entry) has an immediate dominator

20

Immediate Dominators

a

b c

d e

f g

• dom(a) = {a}
• dom(b) = {a,b}
• dom(c) = {a, c}
• dom(d) = {a,d}
• dom(e) = {a, c, e}
• dom(f) = {a, f}
• dom(g) = {a, c, e,g}

21

Immediate Dominators

a

b c

d e

f g

• dom(a) = {a}
• dom(b) = {a,b}
• dom(c) = {a, c}
• dom(d) = {a,d}
• dom(e) = {a, c, e}
• dom(f) = {a, f}
• dom(g) = {a, c, e,g}

21

Immediate Dominators

a

b c

d e

f g

• dom(a) = {a}
• dom(b) = {a,b}
• dom(c) = {a, c}
• dom(d) = {a,d}
• dom(e) = {a, c, e}
• dom(f) = {a, f}
• dom(g) = {a, c, e,g}

21

Immediate Dominators

a

b c

d e

f g

• dom(a) = {a}
• dom(b) = {a,b}
• dom(c) = {a, c}
• dom(d) = {a,d}
• dom(e) = {a, c, e}
• dom(f) = {a, f}
• dom(g) = {a, c, e,g}

21

Dominator Tree

Dominator Tree

• compact representation of dominance relations

• build from immediate dominators

• x is an immediate dominator of y⇔ (x, y) is an edge in the tree

• start node: graph entry

• each node dominates its descendants in the tree

23

Dominator Tree

• compact representation of dominance relations

• build from immediate dominators

• x is an immediate dominator of y⇔ (x, y) is an edge in the tree

• start node: graph entry

• each node dominates its descendants in the tree

23

Dominator Tree

• compact representation of dominance relations

• build from immediate dominators

• x is an immediate dominator of y⇔ (x, y) is an edge in the tree

• start node: graph entry

• each node dominates its descendants in the tree

23

Dominator Tree

• compact representation of dominance relations

• build from immediate dominators

• x is an immediate dominator of y⇔ (x, y) is an edge in the tree

• start node: graph entry

• each node dominates its descendants in the tree

23

Dominator Tree

• compact representation of dominance relations

• build from immediate dominators

• x is an immediate dominator of y⇔ (x, y) is an edge in the tree

• start node: graph entry

• each node dominates its descendants in the tree

23

Dominator Tree

dom(a) = {a}

⇒ root

dom(b) = {a,b}

⇒ (a,b)

dom(c) = {a, c}

⇒ (a, c)

dom(d) = {a,d}

⇒ (a,d)

dom(e) = {a, c, e}

⇒ (c, e)

dom(f) = {a, f}

⇒ (a, f)

dom(g) = {a, c, e,g}

⇒ (e,g)

24

Dominator Tree

dom(a) = {a} ⇒ root
dom(b) = {a,b} ⇒ (a,b)
dom(c) = {a, c} ⇒ (a, c)
dom(d) = {a,d} ⇒ (a,d)
dom(e) = {a, c, e} ⇒ (c, e)
dom(f) = {a, f} ⇒ (a, f)
dom(g) = {a, c, e,g} ⇒ (e,g)

24

Dominator Tree

a

b c d f

e

g

dom(a) = {a} ⇒ root
dom(b) = {a,b} ⇒ (a,b)
dom(c) = {a, c} ⇒ (a, c)
dom(d) = {a,d} ⇒ (a,d)
dom(e) = {a, c, e} ⇒ (c, e)
dom(f) = {a, f} ⇒ (a, f)
dom(g) = {a, c, e,g} ⇒ (e,g)

24

Loops

Motivation

• common construct on function level

• easy to spot in control flow graphs

• graph-theoretical properties that facilitate many kinds of analysis

• automated loop analysis fundamental for many reverse engineering tasks

What are loops and how can we find them?

26

Motivation

• common construct on function level

• easy to spot in control flow graphs

• graph-theoretical properties that facilitate many kinds of analysis

• automated loop analysis fundamental for many reverse engineering tasks

What are loops and how can we find them?

26

Motivation

• common construct on function level

• easy to spot in control flow graphs

• graph-theoretical properties that facilitate many kinds of analysis

• automated loop analysis fundamental for many reverse engineering tasks

What are loops and how can we find them?

26

Motivation

• common construct on function level

• easy to spot in control flow graphs

• graph-theoretical properties that facilitate many kinds of analysis

• automated loop analysis fundamental for many reverse engineering tasks

What are loops and how can we find them?

26

Motivation

• common construct on function level

• easy to spot in control flow graphs

• graph-theoretical properties that facilitate many kinds of analysis

• automated loop analysis fundamental for many reverse engineering tasks

What are loops and how can we find them?

26

Loops

Strongly Connected Component
A subgraph in which each node is reachable from every other node.

• natural loops

• compiler generated

• strong mathematical properties

• irreducible loops

• complicate to analyze

• rarely seen (hand-written assembly, code obfuscation)

We focus only on natural loops.

27

Loops

Strongly Connected Component
A subgraph in which each node is reachable from every other node.

• natural loops

• compiler generated

• strong mathematical properties

• irreducible loops

• complicate to analyze

• rarely seen (hand-written assembly, code obfuscation)

We focus only on natural loops.

27

Loops

Strongly Connected Component
A subgraph in which each node is reachable from every other node.

• natural loops

• compiler generated

• strong mathematical properties

• irreducible loops

• complicate to analyze

• rarely seen (hand-written assembly, code obfuscation)

We focus only on natural loops.

27

Loops

Strongly Connected Component
A subgraph in which each node is reachable from every other node.

• natural loops

• compiler generated

• strong mathematical properties

• irreducible loops

• complicate to analyze

• rarely seen (hand-written assembly, code obfuscation)

We focus only on natural loops.

27

Natural and Irreducible Loop

1

2

3

4

natural loop

1

2

3

4

irreducible loop

28

Natural Loop

Natural Loop

• strong mathematical properties

• generated by compilers

• loop header: single entry point that dominates a loop

• back edge: edge to a dominator

• loop body: set of nodes within a loop

30

Natural Loop

• strong mathematical properties

• generated by compilers

• loop header: single entry point that dominates a loop

• back edge: edge to a dominator

• loop body: set of nodes within a loop

30

Natural Loop

• strong mathematical properties

• generated by compilers

• loop header: single entry point that dominates a loop

• back edge: edge to a dominator

• loop body: set of nodes within a loop

30

Natural Loop

• strong mathematical properties

• generated by compilers

• loop header: single entry point that dominates a loop

• back edge: edge to a dominator

• loop body: set of nodes within a loop

30

Natural Loop

• strong mathematical properties

• generated by compilers

• loop header: single entry point that dominates a loop

• back edge: edge to a dominator

• loop body: set of nodes within a loop

30

Natural Loop

1

2

3

4

• 2 is loop header that dominates loop
• {2, 3} is loop body
• (3, 2) is back edge to the dominator

31

Natural Loop

1

2

3

4

• 2 is loop header that dominates loop

• {2, 3} is loop body
• (3, 2) is back edge to the dominator

31

Natural Loop

1

2

3

4

• 2 is loop header that dominates loop
• {2, 3} is loop body

• (3, 2) is back edge to the dominator

31

Natural Loop

1

2

3

4

• 2 is loop header that dominates loop
• {2, 3} is loop body
• (3, 2) is back edge to the dominator

31

Natural Loop Detection

Natural Loop Detection

• find a back edge

1. x dominates y

2. there is an edge (y, x)

• identify the loop body

1. collect all nodes that are dominated by x

2. filter nodes that can reach y without visiting x

33

Natural Loop Detection

• find a back edge

1. x dominates y

2. there is an edge (y, x)

• identify the loop body

1. collect all nodes that are dominated by x

2. filter nodes that can reach y without visiting x

33

Natural Loop Detection

1

2

3

4

5

67

edge body

(4, 3): {3, 4, 5, 6}

(6, 4): {4, 5, 6}

(6, 3): {3, 4, 5, 6}

34

Natural Loop Detection

1

2

3

4

5

67

edge body

(4, 3): {3, 4, 5, 6}

(6, 4): {4, 5, 6}

(6, 3): {3, 4, 5, 6}

34

Natural Loop Detection

1

2

3

4

5

67

edge body

(4, 3):

{3, 4, 5, 6}

(6, 4): {4, 5, 6}

(6, 3): {3, 4, 5, 6}

34

Natural Loop Detection

1

2

3

4

5

67

edge body

(4, 3): {3, 4, 5, 6}

(6, 4): {4, 5, 6}

(6, 3): {3, 4, 5, 6}

34

Natural Loop Detection

1

2

3

4

5

67

edge body

(4, 3): {3, 4, 5, 6}

(6, 4):

{4, 5, 6}

(6, 3): {3, 4, 5, 6}

34

Natural Loop Detection

1

2

3

4

5

67

edge body

(4, 3): {3, 4, 5, 6}

(6, 4): {4, 5, 6}

(6, 3): {3, 4, 5, 6}

34

Natural Loop Detection

1

2

3

4

5

67

edge body

(4, 3): {3, 4, 5, 6}

(6, 4): {4, 5, 6}

(6, 3):

{3, 4, 5, 6}

34

Natural Loop Detection

1

2

3

4

5

67

edge body

(4, 3): {3, 4, 5, 6}

(6, 4): {4, 5, 6}

(6, 3): {3, 4, 5, 6}

34

Nested Loops

Nesting Relations

Loops can be

• merged

• they have the same header

• hard to tell how they relate to each other

• disjoint

• if they have different headers

• their intersection is empty

• nested

• one function body is entirely contained within the other

36

Nesting Relations

Loops can be

• merged

• they have the same header

• hard to tell how they relate to each other

• disjoint

• if they have different headers

• their intersection is empty

• nested

• one function body is entirely contained within the other

36

Nesting Relations

Loops can be

• merged

• they have the same header

• hard to tell how they relate to each other

• disjoint

• if they have different headers

• their intersection is empty

• nested

• one function body is entirely contained within the other

36

Nesting Relations

Loops can be

• merged

• they have the same header

• hard to tell how they relate to each other

• disjoint

• if they have different headers

• their intersection is empty

• nested

• one function body is entirely contained within the other

36

Nesting Relations

Loops can be

• merged

• they have the same header

• hard to tell how they relate to each other

• disjoint

• if they have different headers

• their intersection is empty

• nested

• one function body is entirely contained within the other

36

Nesting Relations

Loops can be

• merged

• they have the same header

• hard to tell how they relate to each other

• disjoint

• if they have different headers

• their intersection is empty

• nested

• one function body is entirely contained within the other

36

Merged Loops

1

2

3 4

5

l1: {2, 3}

l2: {2, 4}

l1 ∩ l2 = {2}

37

Merged Loops

1

2

3 4

5

l1: {2, 3}

l2: {2, 4}

l1 ∩ l2 = {2}

37

Merged Loops

1

2

3 4

5

l1: {2, 3}

l2: {2, 4}

l1 ∩ l2 = {2}

37

Disjoint Loops

1

2 3

5 4

6

l1: {2, 5}

l2: {3, 4}

l1 ∩ l2 = ∅

38

Disjoint Loops

1

2 3

5 4

6

l1: {2, 5}

l2: {3, 4}

l1 ∩ l2 = ∅

38

Disjoint Loops

1

2 3

5 4

6

l1: {2, 5}

l2: {3, 4}

l1 ∩ l2 = ∅

38

Nested Loops

1

2

3

4

5

6

7

8

l1: {4, 5} innermost loop

l2: {3, 4, 5, 6} inner/outer loop of l3/l1

l3: {2, 3, 4, 5, 6, 7} outermost loop

l1 ⊂ l2 ⊂ l3

39

Nested Loops

1

2

3

4

5

6

7

8

l1: {4, 5}

innermost loop

l2: {3, 4, 5, 6} inner/outer loop of l3/l1

l3: {2, 3, 4, 5, 6, 7} outermost loop

l1 ⊂ l2 ⊂ l3

39

Nested Loops

1

2

3

4

5

6

7

8

l1: {4, 5}

innermost loop

l2: {3, 4, 5, 6}

inner/outer loop of l3/l1

l3: {2, 3, 4, 5, 6, 7} outermost loop

l1 ⊂ l2 ⊂ l3

39

Nested Loops

1

2

3

4

5

6

7

8

l1: {4, 5}

innermost loop

l2: {3, 4, 5, 6}

inner/outer loop of l3/l1

l3: {2, 3, 4, 5, 6, 7}

outermost loop

l1 ⊂ l2 ⊂ l3

39

Nested Loops

1

2

3

4

5

6

7

8

l1: {4, 5} innermost loop

l2: {3, 4, 5, 6}

inner/outer loop of l3/l1

l3: {2, 3, 4, 5, 6, 7}

outermost loop

l1 ⊂ l2 ⊂ l3

39

Nested Loops

1

2

3

4

5

6

7

8

l1: {4, 5} innermost loop

l2: {3, 4, 5, 6} inner/outer loop of l3/l1

l3: {2, 3, 4, 5, 6, 7}

outermost loop

l1 ⊂ l2 ⊂ l3

39

Nested Loops

1

2

3

4

5

6

7

8

l1: {4, 5} innermost loop

l2: {3, 4, 5, 6} inner/outer loop of l3/l1

l3: {2, 3, 4, 5, 6, 7} outermost loop

l1 ⊂ l2 ⊂ l3

39

Nested Loops

1

2

3

4

5

6

7

8

l1: {4, 5} innermost loop

l2: {3, 4, 5, 6} inner/outer loop of l3/l1

l3: {2, 3, 4, 5, 6, 7} outermost loop

l1 ⊂ l2 ⊂ l3

39

Loop Unrolling

Motivation

• reasoning about loops can be hard

• undecidability

• termination condition

• path explosion

• large number of iterations

• analysis with a fixed number of loop iterations beneficial

• many questions remain decidable

• limited analysis scope

41

Motivation

• reasoning about loops can be hard

• undecidability

• termination condition

• path explosion

• large number of iterations

• analysis with a fixed number of loop iterations beneficial

• many questions remain decidable

• limited analysis scope

41

Motivation

• reasoning about loops can be hard

• undecidability

• termination condition

• path explosion

• large number of iterations

• analysis with a fixed number of loop iterations beneficial

• many questions remain decidable

• limited analysis scope

41

Motivation

• reasoning about loops can be hard

• undecidability

• termination condition

• path explosion

• large number of iterations

• analysis with a fixed number of loop iterations beneficial

• many questions remain decidable

• limited analysis scope

41

Motivation

• reasoning about loops can be hard

• undecidability

• termination condition

• path explosion

• large number of iterations

• analysis with a fixed number of loop iterations beneficial

• many questions remain decidable

• limited analysis scope

41

Motivation

• reasoning about loops can be hard

• undecidability

• termination condition

• path explosion

• large number of iterations

• analysis with a fixed number of loop iterations beneficial

• many questions remain decidable

• limited analysis scope

41

Motivation

• reasoning about loops can be hard

• undecidability

• termination condition

• path explosion

• large number of iterations

• analysis with a fixed number of loop iterations beneficial

• many questions remain decidable

• limited analysis scope

41

Motivation

• reasoning about loops can be hard

• undecidability

• termination condition

• path explosion

• large number of iterations

• analysis with a fixed number of loop iterations beneficial

• many questions remain decidable

• limited analysis scope

41

Loop Unrolling

• set an upper iteration bound k

• transform control flow graph into semantically a directed acyclic graph

1. remove back edge

2. duplicate nodes of loop body k times and preserve edge structure

• transformed graph is semantically equivalent for up to k loop iterations

42

Loop Unrolling

• set an upper iteration bound k

• transform control flow graph into semantically a directed acyclic graph

1. remove back edge

2. duplicate nodes of loop body k times and preserve edge structure

• transformed graph is semantically equivalent for up to k loop iterations

42

Loop Unrolling

• set an upper iteration bound k

• transform control flow graph into semantically a directed acyclic graph

1. remove back edge

2. duplicate nodes of loop body k times and preserve edge structure

• transformed graph is semantically equivalent for up to k loop iterations

42

Loop Unrolling

• set an upper iteration bound k

• transform control flow graph into semantically a directed acyclic graph

1. remove back edge

2. duplicate nodes of loop body k times and preserve edge structure

• transformed graph is semantically equivalent for up to k loop iterations

42

Loop Unrolling

1

2

3

4

natural loop

unrolling depth 0 unrolling depth 1

43

Loop Unrolling

1

2

3

4

natural loop

1

2.0

3.0

4

unrolling depth 0

unrolling depth 1

43

Loop Unrolling

1

2

3

4

natural loop

1

2.0

3.0

4

unrolling depth 0

1

2.0

3.0

4

2.1

3.1

unrolling depth 1

43

Conclusion

Control Flow Analysis

• basic blocks

• control flow graph construction

• dominance relations

• natural loop detection

• loop properties and transformations

45

