Control Flow Analysis

Tim Blazytko @mr_phrazer tim@blazytko.to https://synthesis.to

Why?

• high-level structure of a function

- $\cdot\,$ detect branches and loops
- pattern matching to spot interesting code parts
- foundation for **automated** program analysis

Basic Block

• sequence of **ordered** instructions

• sequence of **ordered** instructions

• single entry: only first instruction can be target of a branch

• sequence of **ordered** instructions

• single entry: only first instruction can be target of a branch

• single exit: only last instruction can branch to other basic blocks

Basic Block Identification

1. first instruction is a leader

2. target of a control flow transfer is a leader

3. instruction that immediately follows a control flow transfer is a leader

- strict basic block definition: yes
 - $\cdot\,$ calls interrupt the control flow

- \cdot strict basic block definition: yes
 - calls interrupt the control flow
- \cdot many tools handle it differently due to readability reasons
 - $\cdot\,$ most calls return to the next instruction

- strict basic block definition: yes
 - calls interrupt the control flow
- many tools handle it differently due to readability reasons
 - most calls return to the next instruction

Know how your tool handles it.

Basic Blocks

; leader: first instruction 0x170A0: cmp edi, 26h 0x170A3: jz short 0x170C0

; leader: follows a control flow transfer 0x170A5: jg short 0x170B8

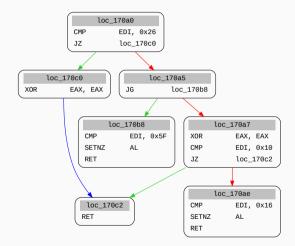
; leader: follows a control flow transfer 0x170A7: xor eax, eax 0x170A9: cmp edi, 10h 0x170AC: jz short 0x170C2

; leader: follows a control flow transfer 0x170AE: cmp edi, 16h 0x170BE: setnz al 0x170B4: retn

; leader: target of control flow transfer 0x17088: cmp edi, 5Fh 0x1708B: setnz al 0x1708E: retn

; leader: target of control flow transfer 0x170C0: xor eax, eax

; leader: target of control flow transfer 0x170C2: retn



Control Flow Graph

- directed multigraph
- nodes are basic blocks

• edges represent control flow between basic blocks

• represents **all program paths** that might be traversed

Entry A node that has no incoming edges.

Entry A node that has no incoming edges.

Exit A node that has no outgoing edges.

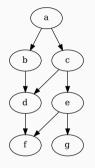
Entry A node that has no incoming edges.

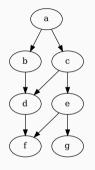
Exit A node that has no outgoing edges.

Path

A chain of transition between nodes.

Control Flow Graph





- *a* is a **entry** node
- \cdot f and g are exists
- $a \rightarrow c \rightarrow d \rightarrow f$ is a **path** between *a* and *f*

Dominance Relations

• graph-theoretic concept

Motivation

- graph-theoretic concept
- analyze relations between basic blocks

- graph-theoretic concept
- analyze relations between basic blocks
- provide **guarantees** that a basic block *x* is **always** executed before *y*

- graph-theoretic concept
- analyze relations between basic blocks
- provide **guarantees** that a basic block *x* is **always** executed before *y*
- \cdot loop detection and analysis

- graph-theoretic concept
- analyze relations between basic blocks
- provide **guarantees** that a basic block *x* is **always** executed before *y*
- loop detection and analysis
- \cdot foundation for many **compiler optimizations** and other analysis techniques

• a node x dominates a node y if every path from the entry node to y goes through x

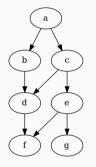
- a node x dominates a node y if every path from the entry node to y goes through x
- x is a **dominator** of y: $(x \le y)$

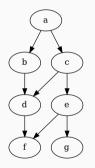
- a node x dominates a node y if every path from the entry node to y goes through x
- x is a **dominator** of y: $(x \le y)$
- *y* is **dominated by** *x*: $(y \ge x)$

- a node x dominates a node y if every path from the entry node to y goes through x
- x is a **dominator** of y: $(x \le y)$
- *y* is **dominated by** *x*: $(y \ge x)$
- dom(y) is the set of all dominators of y (dominator set)

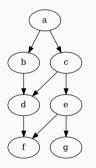
- a node x dominates a node y if every path from the entry node to y goes through x
- x is a **dominator** of y: $(x \le y)$
- *y* is **dominated by** *x*: $(y \ge x)$
- dom(y) is the set of all dominators of y (dominator set)
- each node dominates itself: $y \in dom(y)$

- a node x dominates a node y if every path from the entry node to y goes through x
- x is a **dominator** of y: $(x \le y)$
- *y* is **dominated by** *x*: $(y \ge x)$
- dom(y) is the set of all dominators of y (dominator set)
- each node dominates itself: $y \in dom(y)$
- $\cdot\,$ entry node dominates all nodes in the graph

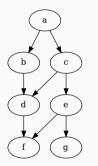




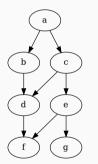
$$\cdot \operatorname{dom}(a) = \{a\}$$



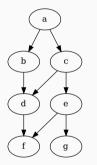
- $\cdot \operatorname{dom}(a) = \{a\}$
- dom(b) = $\{a, b\}$



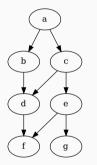
- $\cdot \operatorname{dom}(a) = \{a\}$
- $\cdot \mathsf{dom}(b) = \{a, b\}$
- $\cdot \operatorname{dom}(c) = \{a, c\}$



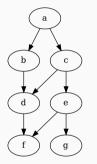
- $\cdot \operatorname{dom}(a) = \{a\}$
- $\cdot \mathsf{dom}(b) = \{a, b\}$
- $\cdot \operatorname{dom}(c) = \{a, c\}$
- $\cdot \operatorname{dom}(d) = \{a, d\}$



- $\cdot \operatorname{dom}(a) = \{a\}$
- $\cdot \mathsf{dom}(b) = \{a, b\}$
- $\cdot \operatorname{dom}(c) = \{a, c\}$
- $\cdot \operatorname{dom}(d) = \{a, d\}$
- · dom(e) = {a, c, e}



- $\cdot \operatorname{dom}(a) = \{a\}$
- $\cdot \operatorname{dom}(b) = \{a, b\}$
- $\cdot \operatorname{dom}(c) = \{a, c\}$
- $\cdot \operatorname{dom}(d) = \{a, d\}$
- dom(e) = $\{a, c, e\}$
- $\cdot \operatorname{dom}(f) = \{a, f\}$



- $\cdot \operatorname{dom}(a) = \{a\}$
- $\cdot \operatorname{dom}(b) = \{a, b\}$
- $\cdot \mathsf{dom}(c) = \{a, c\}$
- $\cdot \operatorname{dom}(d) = \{a, d\}$
- · dom(e) = $\{a, c, e\}$
- · dom(f) = $\{a, f\}$
- $\cdot \operatorname{dom}(g) = \{a, c, e, g\}$

Immediate Dominator

• a node x strictly dominates a node y if $x \le y$ and $x \ne y$: x < y

- a node *x* strictly dominates a node *y* if $x \le y$ and $x \ne y$: x < y
- x is an **immediate dominator** of y if

- a node *x* strictly dominates a node *y* if $x \le y$ and $x \ne y$: x < y
- x is an **immediate dominator** of y if

- a node *x* strictly dominates a node *y* if $x \le y$ and $x \ne y$: x < y
- x is an **immediate dominator** of y if

2. ∃c : x < c < y

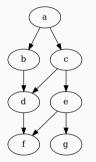
- a node *x* strictly dominates a node *y* if $x \le y$ and $x \ne y$: x < y
- x is an **immediate dominator** of y if

- 2. ∄c : x < c < y
- *x* is the **closest dominator** to *y* with $x \neq y$

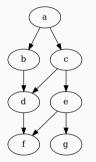
- a node *x* strictly dominates a node *y* if $x \le y$ and $x \ne y$: x < y
- x is an **immediate dominator** of y if

2. ∄c : x < c < y

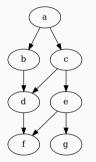
- *x* is the **closest dominator** to *y* with $x \neq y$
- every node (except entry) has an immediate dominator



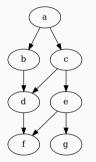
- $\cdot \operatorname{dom}(a) = \{a\}$
- dom(b) = $\{a, b\}$
- $\cdot \mathsf{dom}(c) = \{a, c\}$
- $\cdot \operatorname{dom}(d) = \{a, d\}$
- · dom(e) = $\{a, c, e\}$
- $\cdot \mathsf{dom}(f) = \{a, f\}$
- $\cdot \operatorname{dom}(g) = \{a, c, e, g\}$



- $\cdot \operatorname{dom}(a) = \{a\}$
- dom(b) = $\{a, b\}$
- · dom(c) = $\{a, c\}$
- $\cdot \operatorname{dom}(d) = \{ a, d \}$
- · dom(e) = $\{a, c, e\}$
- · dom(f) = {a, f}
- $\cdot \operatorname{dom}(g) = \{a, c, e, g\}$



- $\cdot \operatorname{dom}(a) = \{a\}$
- dom(b) = $\{a, b\}$
- · dom(c) = $\{a, c\}$
- $\cdot \operatorname{dom}(d) = \{ a, d \}$
- · dom(e) = $\{a, c, e\}$
- · dom(f) = {a, f}
- $\cdot \operatorname{dom}(g) = \{a, c, e, g\}$



- $\cdot \operatorname{dom}(a) = \{a\}$
- dom(b) = $\{a, b\}$
- $\cdot \operatorname{dom}(c) = \{a, c\}$
- $\cdot \operatorname{dom}(d) = \{ a, d \}$
- · dom(e) = $\{a, c, e\}$
- · dom(f) = {a, f}
- $\cdot \operatorname{dom}(g) = \{a, c, \frac{e}{2}, g\}$

Dominator Tree

• **compact** representation of dominance relations

- **compact** representation of dominance relations
- build from **immediate dominators**

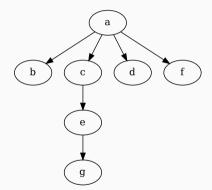
- compact representation of dominance relations
- build from **immediate dominators**
- x is an immediate dominator of $y \Leftrightarrow (x, y)$ is an edge in the tree

- **compact** representation of dominance relations
- build from **immediate dominators**
- x is an immediate dominator of $y \Leftrightarrow (x, y)$ is an edge in the tree
- start node: graph entry

- **compact** representation of dominance relations
- build from immediate dominators
- x is an immediate dominator of $y \Leftrightarrow (x, y)$ is an edge in the tree
- start node: graph entry
- $\cdot\,$ each node dominates its descendants in the tree

$$dom(a) = \{a\}
dom(b) = \{a, b\}
dom(c) = \{a, c\}
dom(d) = \{a, d\}
dom(e) = \{a, c, e\}
dom(f) = \{a, f\}
dom(g) = \{a, c, e, g\}$$

dom(a)	=	{a}	\Rightarrow	root
dom(b)	=	{ <mark>a</mark> , b}	\Rightarrow	(a, b)
dom(c)	=	{ <mark>a</mark> , c}	\Rightarrow	(a, c)
dom(d)	=	{ <mark>a</mark> ,d}	\Rightarrow	(a, d)
dom(e)	=	{a, <mark>c</mark> , e}	\Rightarrow	(c, e)
dom(f)	=	{ <mark>a</mark> , <i>f</i> }	\Rightarrow	(a,f)
dom(g)	=	{a, c, <mark>e</mark> , g}	\Rightarrow	(e,g)



dom(a)	=	{a}	\Rightarrow	root
dom(b)	=	{ <mark>a</mark> , b}	\Rightarrow	(a, b)
dom(c)	=	{ <mark>a</mark> , c}	\Rightarrow	(a, c)
dom(d)	=	{ <mark>a</mark> ,d}	\Rightarrow	(a, d)
dom(e)	=	{a, c , e}	\Rightarrow	(c, e)
dom(f)	=	{ <mark>a</mark> , <i>f</i> }	\Rightarrow	(a,f)
dom(g)	=	{a, c, <mark>e</mark> , g}	\Rightarrow	(e,g)

Loops

• common construct on function level

- common construct on function level
- **easy** to spot in control flow graphs

- common construct on function level
- easy to spot in control flow graphs
- graph-theoretical properties that facilitate many kinds of analysis

- common construct on function level
- easy to spot in control flow graphs
- graph-theoretical properties that facilitate many kinds of analysis
- automated loop analysis fundamental for many reverse engineering tasks

- common construct on function level
- easy to spot in control flow graphs
- graph-theoretical properties that facilitate many kinds of analysis
- automated loop analysis fundamental for many reverse engineering tasks

What are loops and how can we find them?

A subgraph in which **each** node is **reachable** from **every** other node.

A subgraph in which **each** node is **reachable** from **every** other node.

- natural loops
 - compiler generated
 - strong mathematical properties

A subgraph in which **each** node is **reachable** from **every** other node.

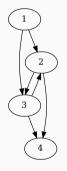
- natural loops
 - compiler generated
 - strong mathematical properties
- irreducible loops
 - \cdot complicate to analyze
 - rarely seen (hand-written assembly, code obfuscation)

A subgraph in which **each** node is **reachable** from **every** other node.

- natural loops
 - compiler generated
 - strong mathematical properties
- irreducible loops
 - complicate to analyze
 - rarely seen (hand-written assembly, code obfuscation)

We focus only on natural loops.

Natural and Irreducible Loop



natural loop

irreducible loop

Natural Loop

• strong mathematical properties

Natural Loop

- strong mathematical properties
- generated by compilers

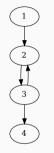
- strong mathematical properties
- generated by compilers
- loop header: single entry point that dominates a loop

- strong mathematical properties
- generated by compilers
- loop header: single entry point that dominates a loop
- back edge: edge to a dominator

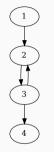
- strong mathematical properties
- generated by compilers
- loop header: single entry point that dominates a loop
- back edge: edge to a dominator
- loop body: set of nodes within a loop

Natural Loop

• 2 is loop **header** that **dominates** loop



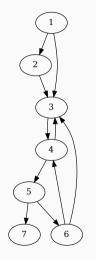
- 2 is loop header that dominates loop
- {2,3} is loop **body**

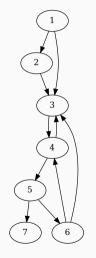


- 2 is loop header that dominates loop
- {2,3} is loop **body**
- (3,2) is **back edge** to the dominator

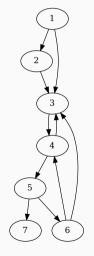
- \cdot find a back edge
 - 1. x dominates y
 - 2. there is an edge (y, x)

- $\cdot\,$ find a back edge
 - 1. x dominates y
 - 2. there is an edge (y, x)
- identify the loop body
 - 1. collect all **nodes** that are **dominated by** *x*
 - 2. filter nodes that can reach y without visiting x

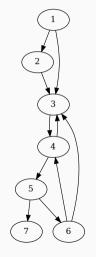


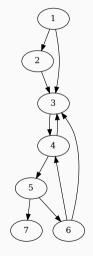


edge body

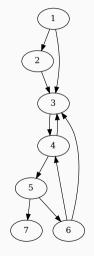


(4,3):

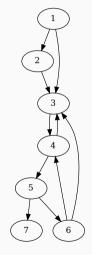




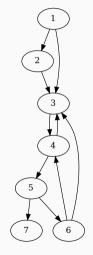
edge	body
(4,3):	{3, 4, 5, 6}
(6,4):	



edge	body
(4,3):	{3,4,5,6}
(6,4):	$\{4, 5, 6\}$



edge	body
(4,3):	{3, 4, 5, 6}
(6,4):	$\{4, 5, 6\}$
(6,3):	



edge	body
(4,3):	{3,4,5,6}
(6,4):	$\{4, 5, 6\}$
(6,3):	{3,4,5,6}

Nested Loops

Loops can be

merged

• disjoint

Loops can be

- merged
 - they have the **same** header

• disjoint

Loops can be

- merged
 - $\cdot\,$ they have the same header
 - $\cdot \,$ hard to tell how they relate to each other
- disjoint

Loops can be

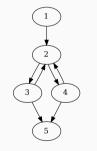
- merged
 - $\cdot\,$ they have the same header
 - $\cdot \,$ hard to tell how they relate to each other
- disjoint
 - if they have **different** headers

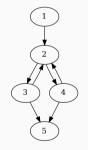
Loops can be

- merged
 - \cdot they have the **same** header
 - $\cdot \,$ hard to tell how they relate to each other
- disjoint
 - if they have **different** headers
 - $\cdot\,$ their intersection is empty
- nested

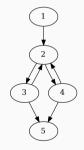
Loops can be

- merged
 - \cdot they have the **same** header
 - $\cdot \,$ hard to tell how they relate to each other
- disjoint
 - if they have different headers
 - $\cdot\,$ their intersection is empty
- \cdot nested
 - $\cdot\,$ one function body is **entirely contained** within the other



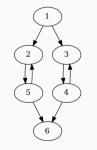


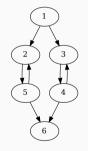
 $l_1: \{2,3\}$ $l_2: \{2,4\}$



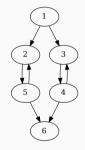
$$l_1: \{2,3\}$$

 $l_2: \{2,4\}$
 $l_1 \cap l_2 = \{2\}$

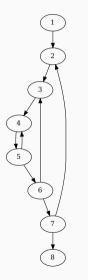


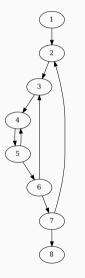


 $l_1: \{2, 5\}$ $l_2: \{3, 4\}$

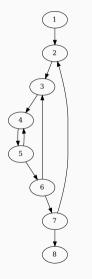


 $l_1: \{2, 5\}$ $l_2: \{3, 4\}$ $l_1 \cap l_2 = \emptyset$

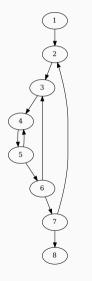




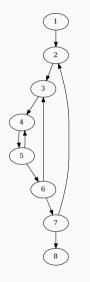
 $l_1: \{4, 5\}$



 $l_1: \{4, 5\}$ l_2 : {3, 4, 5, 6}



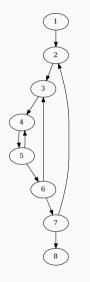
- $l_1: \{4, 5\}$ $l_2: \{3, 4, 5, 6\}$
- l_3 : {2, 3, 4, 5, 6, 7}



*l*₁: {4,5} innermost loop

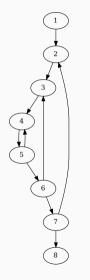
$$l_2$$
: {3, 4, 5, 6}

$$l_3$$
: {2, 3, 4, 5, 6, 7}

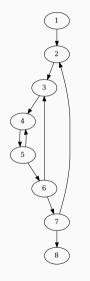


- *l*₁: {4,5} innermost loop
- l_2 : {3, 4, 5, 6} inner/outer loop of l_3/l_1

$$l_3: \{2, 3, 4, 5, 6, 7\}$$



- $l_1: \{4,5\}$ innermost loop
- l_2 : {3, 4, 5, 6} inner/outer loop of l_3/l_1
- $l_3: \{2, 3, 4, 5, 6, 7\}$ outermost loop



- $l_1: \{4,5\}$ innermost loop
- l_2 : {3, 4, 5, 6} inner/outer loop of l_3/l_1
- $l_3: \{2, 3, 4, 5, 6, 7\}$ outermost loop

 $l_1 \subset l_2 \subset l_3$

Loop Unrolling

• reasoning about loops can be hard

- reasoning about loops can be hard
 - undecidability

- reasoning about loops can be hard
 - undecidability
 - termination condition

- reasoning about loops can be hard
 - undecidability
 - \cdot termination condition
 - \cdot path explosion

- reasoning about loops can be hard
 - undecidability
 - \cdot termination condition
 - path explosion
 - large number of iterations

- reasoning about loops can be hard
 - undecidability
 - \cdot termination condition
 - \cdot path explosion
 - large number of iterations
- analysis with a fixed number of loop iterations beneficial

- reasoning about loops can be hard
 - undecidability
 - \cdot termination condition
 - \cdot path explosion
 - large number of iterations
- analysis with a fixed number of loop iterations beneficial
 - many questions remain decidable

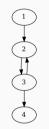
- reasoning about loops can be hard
 - undecidability
 - \cdot termination condition
 - \cdot path explosion
 - large number of iterations
- analysis with a fixed number of loop iterations beneficial
 - many questions remain decidable
 - limited analysis scope

set an upper iteration bound k

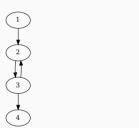
- set an **upper** iteration **bound** *k*
- transform control flow graph into semantically a directed acyclic graph

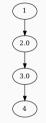
- set an **upper** iteration **bound** *k*
- transform control flow graph into semantically a directed acyclic graph
 - 1. remove back edge
 - 2. duplicate nodes of loop body k times and preserve edge structure

- set an **upper** iteration **bound** *k*
- transform control flow graph into semantically a directed acyclic graph
 - 1. **remove** back edge
 - 2. **duplicate** nodes of loop body *k* times and **preserve** edge structure
- transformed graph is **semantically equivalent** for up to *k* loop iterations



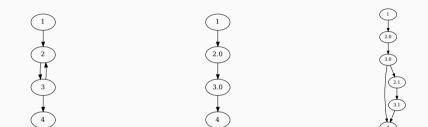
natural loop





natural loop

unrolling depth 0



natural loop

unrolling depth 0

unrolling depth 1

Conclusion

- basic blocks
- control flow graph construction
- dominance relations
- natural loop detection
- loop properties and transformations